中国沙漠 ›› 2024, Vol. 44 ›› Issue (6): 287-298.DOI: 10.7522/j.issn.1000-694X.2024.00136
钱广强1(), 杨转玲2, 邢学刚2, 董治宝3, 潘凯佳1, 孟雨萱1, 郭酉元1
收稿日期:
2024-09-10
修回日期:
2024-09-24
出版日期:
2024-11-20
发布日期:
2024-12-06
作者简介:
钱广强(1978—),男,山东嘉祥人,研究员,主要从事风沙物理与风沙地貌研究。E-mail: gqqian@lzb.ac.cn
基金资助:
Guangqiang Qian1(), Zhuanling Yang2, Xuegang Xing2, Zhibao Dong3, Kaijia Pan1, Yuxuan Meng1, Youyuan Guo1
Received:
2024-09-10
Revised:
2024-09-24
Online:
2024-11-20
Published:
2024-12-06
摘要:
蠕移是风沙颗粒传输的3种基本形式之一,也是目前较少关注的研究领域。砾波纹作为一种独特风沙地貌形态,由双峰型沉积物组成,表面被粗颗粒覆盖,其形成演化与蠕移运动密切相关,但学界对其形态动力过程认知非常有限。因此,以砾波纹为载体,研究了蠕移运动规律并探讨其地貌学意义。本研究在库姆塔格沙漠北部三垄沙地区开展,借助新型蠕移集沙仪,在14个月内进行了10次连续原位观测。结果表明:砾波纹地表的蠕移输沙通量为0.047~0.352 g·cm-2·min-1,且随季节存在明显的变化。蠕移质的粒度分布为双峰型,分选较好,粗偏,宽至极宽峰态,中沙和细沙含量可达85%,粗沙及以上颗粒占10%强;不同粒级的蠕移输沙通量存在较大差异,中细沙输沙通量最大,极粗沙和极细砾则呈量级减少。蠕移输沙通量与起沙风平均风速之间存在相关性,最强的蠕移输沙过程发生在夏季沙尘暴期间,而最弱的发生在冬季。除了风况之外,沉积物粒度特征、不同方向的沙源供应程度均影响蠕移输沙通量和物质组成。从沉积学上来看,砾波纹表面的蠕移运动,对其内部“渗入”结构和粗细互层的前积纹层形成具有重要贡献。本研究对揭示风沙蠕移物理过程和砾波纹地貌演化提供了一些新的认识。传统上以粒径划分蠕移的方法值得商榷,更为深入的蠕移运动机理及其在地貌学意义值得深入研究。
中图分类号:
钱广强, 杨转玲, 邢学刚, 董治宝, 潘凯佳, 孟雨萱, 郭酉元. 砾波纹地表风沙颗粒蠕移特征及其地貌学意义[J]. 中国沙漠, 2024, 44(6): 287-298.
Guangqiang Qian, Zhuanling Yang, Xuegang Xing, Zhibao Dong, Kaijia Pan, Yuxuan Meng, Youyuan Guo. Creep of aeolian sediments on the surface of granule ripples and its geomorphological significance[J]. Journal of Desert Research, 2024, 44(6): 287-298.
图1 研究区位置(A)及埋设在典型砾波纹表面(C)的蠕移集沙仪(B)注:基于自然资源部标准地图服务网站标准地图(审图号:GS(2023)2763号)制作,底图边界无修改
Fig.1 Location of the study area (A) and the creep sand trap (B) installed on the surface of typical granule ripples (C)
编号 | 观测日期 | 天数 | 起沙风时长 / ×10 min | 平均风速 /(m·s-1) | 最大风速 /(m·s-1) |
---|---|---|---|---|---|
P1 | 2021-12-12—2022-01-28 | 48 | 114 | 7.84 | 11.17 |
P2 | 2022-01-29—2022-03-28 | 59 | 1 526 | 8.73 | 13.84 |
P3 | 2022-03-29—2022-05-09 | 42 | 1 422 | 8.98 | 16.65 |
P4 | 2022-05-10—2022-06-03 | 25 | 1 682 | 8.91 | 15.94 |
P5 | 2022-06-04—2022-07-03 | 31 | 1 451 | 8.63 | 14.01 |
P6 | 2022-07-04—2022-07-08 | 4 | 260 | 10.51 | 18.02 |
P7 | 2022-07-09—2022-09-05 | 59 | 2 769 | 9.10 | 18.50 |
P8 | 2022-09-06—2022-11-17 | 73 | 2 016 | 9.04 | 15.65 |
P9 | 2022-11-14—2022-12-31 | 45 | 492 | 8.54 | 17.28 |
P10 | 2023-01-01—2023-02-08 | 38 | 422 | 9.32 | 16.93 |
表1 10次蠕移观测的起讫时间和起沙风风况
Table 1 Start and end times of the ten creep observations and the sand-driving wind conditions
编号 | 观测日期 | 天数 | 起沙风时长 / ×10 min | 平均风速 /(m·s-1) | 最大风速 /(m·s-1) |
---|---|---|---|---|---|
P1 | 2021-12-12—2022-01-28 | 48 | 114 | 7.84 | 11.17 |
P2 | 2022-01-29—2022-03-28 | 59 | 1 526 | 8.73 | 13.84 |
P3 | 2022-03-29—2022-05-09 | 42 | 1 422 | 8.98 | 16.65 |
P4 | 2022-05-10—2022-06-03 | 25 | 1 682 | 8.91 | 15.94 |
P5 | 2022-06-04—2022-07-03 | 31 | 1 451 | 8.63 | 14.01 |
P6 | 2022-07-04—2022-07-08 | 4 | 260 | 10.51 | 18.02 |
P7 | 2022-07-09—2022-09-05 | 59 | 2 769 | 9.10 | 18.50 |
P8 | 2022-09-06—2022-11-17 | 73 | 2 016 | 9.04 | 15.65 |
P9 | 2022-11-14—2022-12-31 | 45 | 492 | 8.54 | 17.28 |
P10 | 2023-01-01—2023-02-08 | 38 | 422 | 9.32 | 16.93 |
编号 | 极细砾 | 极粗沙 | 粗沙 | 中沙 | 细沙 | 极细沙 | 粉沙黏土 |
---|---|---|---|---|---|---|---|
P1 | 0.04 | 0.33 | 4.70 | 49.21 | 42.05 | 3.64 | 0.00 |
P2 | 0.40 | 1.95 | 3.94 | 42.38 | 45.74 | 5.55 | 0.00 |
P3 | 0.04 | 0.90 | 6.33 | 53.78 | 36.84 | 2.04 | 0.00 |
P4 | 0.23 | 3.56 | 7.29 | 53.44 | 33.56 | 1.90 | 0.00 |
P5 | 1.32 | 7.21 | 5.18 | 46.11 | 36.26 | 3.82 | 0.00 |
P6 | 1.66 | 11.11 | 4.84 | 42.23 | 38.69 | 1.40 | 0.00 |
P7 | 0.37 | 2.68 | 4.95 | 48.21 | 41.13 | 2.56 | 0.00 |
P8 | 0.66 | 7.74 | 6.69 | 47.09 | 35.23 | 2.59 | 0.00 |
P9 | 1.50 | 8.82 | 5.57 | 43.36 | 38.30 | 2.42 | 0.00 |
P10 | 1.55 | 8.69 | 5.51 | 46.58 | 35.25 | 2.39 | 0.00 |
地表 | 2.79 | 32.29 | 6.13 | 27.60 | 26.31 | 4.60 | 0.23 |
表2 历次观测和地表样品的粒级含量(%)
Table 2 Grain size percentage content of each observation and surface samples (%)
编号 | 极细砾 | 极粗沙 | 粗沙 | 中沙 | 细沙 | 极细沙 | 粉沙黏土 |
---|---|---|---|---|---|---|---|
P1 | 0.04 | 0.33 | 4.70 | 49.21 | 42.05 | 3.64 | 0.00 |
P2 | 0.40 | 1.95 | 3.94 | 42.38 | 45.74 | 5.55 | 0.00 |
P3 | 0.04 | 0.90 | 6.33 | 53.78 | 36.84 | 2.04 | 0.00 |
P4 | 0.23 | 3.56 | 7.29 | 53.44 | 33.56 | 1.90 | 0.00 |
P5 | 1.32 | 7.21 | 5.18 | 46.11 | 36.26 | 3.82 | 0.00 |
P6 | 1.66 | 11.11 | 4.84 | 42.23 | 38.69 | 1.40 | 0.00 |
P7 | 0.37 | 2.68 | 4.95 | 48.21 | 41.13 | 2.56 | 0.00 |
P8 | 0.66 | 7.74 | 6.69 | 47.09 | 35.23 | 2.59 | 0.00 |
P9 | 1.50 | 8.82 | 5.57 | 43.36 | 38.30 | 2.42 | 0.00 |
P10 | 1.55 | 8.69 | 5.51 | 46.58 | 35.25 | 2.39 | 0.00 |
地表 | 2.79 | 32.29 | 6.13 | 27.60 | 26.31 | 4.60 | 0.23 |
风速/(m·s-1) | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 |
---|---|---|---|---|---|---|---|---|---|---|
[0, 5.87) | 97.41 | 79.46 | 72.37 | 47.72 | 61.94 | 49.57 | 63.05 | 78.02 | 90.50 | 90.94 |
[5.87, 7.84) | 1.85 | 9.15 | 12.30 | 22.61 | 17.96 | 10.81 | 14.39 | 8.68 | 5.16 | 4.15 |
[7.84, 10.42) | 0.68 | 8.32 | 10.62 | 19.36 | 14.63 | 22.81 | 15.56 | 9.35 | 3.55 | 2.56 |
[10.42, 13.8) | 0.06 | 3.06 | 4.15 | 9.58 | 5.35 | 8.92 | 6.30 | 3.29 | 0.47 | 2.03 |
[13.8, ∞) | 0.00 | 0.01 | 0.56 | 0.72 | 0.12 | 7.89 | 0.71 | 0.67 | 0.32 | 0.33 |
表3 历次观测期间不同风速区间的出现频率 (%)
Table 3 Frequency of occurrence of different wind speed intervals during each observation period
风速/(m·s-1) | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 |
---|---|---|---|---|---|---|---|---|---|---|
[0, 5.87) | 97.41 | 79.46 | 72.37 | 47.72 | 61.94 | 49.57 | 63.05 | 78.02 | 90.50 | 90.94 |
[5.87, 7.84) | 1.85 | 9.15 | 12.30 | 22.61 | 17.96 | 10.81 | 14.39 | 8.68 | 5.16 | 4.15 |
[7.84, 10.42) | 0.68 | 8.32 | 10.62 | 19.36 | 14.63 | 22.81 | 15.56 | 9.35 | 3.55 | 2.56 |
[10.42, 13.8) | 0.06 | 3.06 | 4.15 | 9.58 | 5.35 | 8.92 | 6.30 | 3.29 | 0.47 | 2.03 |
[13.8, ∞) | 0.00 | 0.01 | 0.56 | 0.72 | 0.12 | 7.89 | 0.71 | 0.67 | 0.32 | 0.33 |
指示 | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 |
---|---|---|---|---|---|---|---|---|---|---|
DPN/(VU) | 0.00 | 6.09 | 3.88 | 4.37 | 18.63 | 3.67 | 28.81 | 15.35 | 11.77 | 9.23 |
DPNNE/(VU) | 0.05 | 58.10 | 67.31 | 19.90 | 37.93 | 32.14 | 118.76 | 85.99 | 10.70 | 19.44 |
DPNE/(VU) | 0.01 | 3.47 | 8.55 | 19.43 | 2.62 | 1.71 | 16.94 | 4.90 | 1.06 | 2.58 |
DPENE/(VU) | 0.00 | 0.06 | 0.23 | 13.44 | 0.32 | 0.00 | 0.20 | 0.25 | 0.00 | 0.03 |
DPE/(VU) | 1.95 | 4.49 | 0.67 | 23.42 | 4.99 | 0.00 | 1.33 | 13.93 | 1.16 | 0.14 |
DPESE/(VU) | 0.18 | 0.11 | 1.00 | 6.02 | 0.48 | 0.00 | 2.44 | 0.83 | 0.10 | 0.00 |
DPSE/(VU) | 0.01 | 0.00 | 0.07 | 0.59 | 0.06 | 0.00 | 1.62 | 0.01 | 0.00 | 0.00 |
DPSSE/(VU) | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.16 | 0.03 | 0.00 | 0.00 |
DPS/(VU) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 |
DPSSW/(VU) | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 |
DPSW/(VU) | 0.11 | 0.03 | 0.08 | 1.28 | 0.00 | 0.00 | 0.48 | 0.04 | 0.00 | 0.00 |
DPWSW/(VU) | 0.46 | 0.05 | 0.65 | 2.62 | 0.02 | 0.00 | 0.28 | 0.06 | 0.00 | 1.43 |
DPW/(VU) | 0.00 | 0.43 | 0.46 | 0.09 | 0.08 | 0.00 | 0.15 | 0.19 | 0.00 | 0.01 |
DPWNW/(VU) | 0.00 | 0.16 | 0.22 | 0.01 | 0.00 | 0.00 | 0.13 | 0.02 | 0.00 | 0.00 |
DPNW/(VU) | 0.00 | 0.00 | 0.03 | 0.00 | 0.14 | 0.00 | 0.52 | 0.01 | 0.00 | 0.00 |
DPNNW/(VU) | 0.00 | 0.27 | 0.29 | 2.18 | 0.56 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 |
2.77 | 73.27 | 83.44 | 93.33 | 65.84 | 37.53 | 172.06 | 121.60 | 24.78 | 32.86 | |
RDP/(VU) | 1.68 | 68.43 | 78.46 | 70.59 | 59.93 | 36.98 | 159.92 | 110.07 | 23.13 | 29.53 |
RDD/(°) | 279.80 | 204.56 | 204.12 | 236.50 | 201.14 | 201.29 | 202.36 | 207.48 | 195.21 | 195.83 |
RDP/DP | 0.60 | 0.93 | 0.94 | 0.76 | 0.91 | 0.99 | 0.93 | 0.91 | 0.93 | 0.90 |
表4 历次观测期间的输沙势变化
Table 4 Changes in sand transport potential during each observation period
指示 | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | P9 | P10 |
---|---|---|---|---|---|---|---|---|---|---|
DPN/(VU) | 0.00 | 6.09 | 3.88 | 4.37 | 18.63 | 3.67 | 28.81 | 15.35 | 11.77 | 9.23 |
DPNNE/(VU) | 0.05 | 58.10 | 67.31 | 19.90 | 37.93 | 32.14 | 118.76 | 85.99 | 10.70 | 19.44 |
DPNE/(VU) | 0.01 | 3.47 | 8.55 | 19.43 | 2.62 | 1.71 | 16.94 | 4.90 | 1.06 | 2.58 |
DPENE/(VU) | 0.00 | 0.06 | 0.23 | 13.44 | 0.32 | 0.00 | 0.20 | 0.25 | 0.00 | 0.03 |
DPE/(VU) | 1.95 | 4.49 | 0.67 | 23.42 | 4.99 | 0.00 | 1.33 | 13.93 | 1.16 | 0.14 |
DPESE/(VU) | 0.18 | 0.11 | 1.00 | 6.02 | 0.48 | 0.00 | 2.44 | 0.83 | 0.10 | 0.00 |
DPSE/(VU) | 0.01 | 0.00 | 0.07 | 0.59 | 0.06 | 0.00 | 1.62 | 0.01 | 0.00 | 0.00 |
DPSSE/(VU) | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.16 | 0.03 | 0.00 | 0.00 |
DPS/(VU) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 |
DPSSW/(VU) | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.00 | 0.00 |
DPSW/(VU) | 0.11 | 0.03 | 0.08 | 1.28 | 0.00 | 0.00 | 0.48 | 0.04 | 0.00 | 0.00 |
DPWSW/(VU) | 0.46 | 0.05 | 0.65 | 2.62 | 0.02 | 0.00 | 0.28 | 0.06 | 0.00 | 1.43 |
DPW/(VU) | 0.00 | 0.43 | 0.46 | 0.09 | 0.08 | 0.00 | 0.15 | 0.19 | 0.00 | 0.01 |
DPWNW/(VU) | 0.00 | 0.16 | 0.22 | 0.01 | 0.00 | 0.00 | 0.13 | 0.02 | 0.00 | 0.00 |
DPNW/(VU) | 0.00 | 0.00 | 0.03 | 0.00 | 0.14 | 0.00 | 0.52 | 0.01 | 0.00 | 0.00 |
DPNNW/(VU) | 0.00 | 0.27 | 0.29 | 2.18 | 0.56 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 |
2.77 | 73.27 | 83.44 | 93.33 | 65.84 | 37.53 | 172.06 | 121.60 | 24.78 | 32.86 | |
RDP/(VU) | 1.68 | 68.43 | 78.46 | 70.59 | 59.93 | 36.98 | 159.92 | 110.07 | 23.13 | 29.53 |
RDD/(°) | 279.80 | 204.56 | 204.12 | 236.50 | 201.14 | 201.29 | 202.36 | 207.48 | 195.21 | 195.83 |
RDP/DP | 0.60 | 0.93 | 0.94 | 0.76 | 0.91 | 0.99 | 0.93 | 0.91 | 0.93 | 0.90 |
1 | Bagnold R A.The Physics of Blown Sand and Desert Dunes[M].London,UK:Methuen,1941:265. |
2 | 吴正.风沙地貌与治沙工程学[M].北京:科学出版社,2003:448. |
3 | Lancaster N.Geomorphology of Desert Dunes[M].Cambridge,UK:Cambridge University Press,2023:333. |
4 | Gunn A, Jerolmack D J.Conditions for aeolian transport in the Solar System[J].Nature Astronomy,2022,6(8):923-929. |
5 | 王涛.中国防沙治沙实践与沙漠科学发展的70年:Ⅲ.发展篇(1)[J].中国沙漠,2024,44(1):1-10. |
6 | Ravi S, D'Odorico P, Breshears D D,et al.Aeolian processes and the biosphere[J].Reviews of Geophysics,2011,49(RG3001):1-45. |
7 | Kang L, Zou X.Theoretical analysis of particle number density in steady aeolian saltation[J].Geomorphology,2014,204:542-552. |
8 | Zhang C L, Zhou N, Zhang J Q.Sand flux and wind profiles in the saltation layer above a rounded dune top[J].Science China-Earth Sciences,2014,57(3):523-533. |
9 | Dong Z B, Lv P, Zhang Z C,et al.Aeolian transport in the field:a comparison of the effects of different surface treatments[J].Journal of Geophysical Research-Atmospheres,2012,117(D9):D017538. |
10 | Kok J F, Renno N O.A comprehensive numerical model of steady state saltation(COMSALT)[J]. Journal of Geophysical Research,2009,114(D17):1-20. |
11 | Pye K.Aeolian Dust and Dust Deposits[M].London,UK:Academic Press,1987:334. |
12 | Zhang P, Sherman D J, Li B.Aeolian creep transport:a review[J].Aeolian Research,2021,51:100711. |
13 | Cheng H, Zou X, Liu C,et al.Transport mass of creeping sand grains and their movement velocities[J].Journal of Geophysical Research:Atmospheres,2013,118(12):6374-6382. |
14 | Kok J F, Parteli E J R, Michaels T I,et al.The physics of wind-blown sand and dust[J].Reports on Progress in Physics,2012,75(10):106901. |
15 | Yizhaq H J, Balmforth N, Provenzale A.Blown by wind:nonlinear dynamics of aeolian sand ripples[J].Physica D:Nonlinear Phenomena,2004,195(3/4):207-228. |
16 | Zheng X, Bo T, Xie L.DPTM simulation of aeolian sand ripple[J].Science in China Series G-Physics Mechanics Astronomy,2008,51(3):328-336. |
17 | Tholen K, Pähtz T, Yizhaq H,et al.Megaripple mechanics:bimodal transport ingrained in bimodal sands[J].Nature Communications,2022,13(1):162. |
18 | Qian G, Dong Z, Zhang Z,et al.Granule ripples in the Kumtagh Desert,China:morphology,grain size and influencing factors[J].Sedimentology,2012,59(6):1888-1901. |
19 | Sharp R P.Wind ripples[J].Journal of Geology,1963,71:617-636. |
20 | Lämmel M, Meiwald A, Yizhaq H,et al.Aeolian sand sorting and megaripple formation[J].Nature Physics,2018,14:759-765. |
21 | Fryberger S G, Hesp P, Hastings K.Aeolian granule ripple deposits,Namibia[J].Sedimentology,1992,39(2):319-331. |
22 | Yizhaq H, Isenberg O, Wenkart R,et al.Morphology and dynamics of aeolian mega-ripples in Nahal Kasuy,southern Israel[J].Israel Journal of Earth Sciences,2009,57:149-165. |
23 | Qian G, Yang Z, Xing X,et al.Seasonal morphological evolution and migration of granule ripples in the Sanlongsha Dune Field,northern Kumtagh Sand Sea,China[J].Geomorphology,2024,444:108951. |
24 | 郭酉元,钱广强,杨转玲,等.库姆塔格沙漠三垄沙地区砾波纹形态、粒度及环境风况[J].中国沙漠,2024,44(4):37-45. |
25 | Sherman D J, Zhang P, Martin R L,et al.Aeolian ripple migration and associated creep transport rates[J].Geosciences,2019,9(9):389. |
26 | Zimbelman J R, Irwin R P, Williams S H,et al.The rate of granule ripple movement on Earth and Mars[J].Icarus,2009,203(1):71-76. |
27 | Foroutan M, Zimbelman J R.Mega-ripples in Iran:a new analog for transverse aeolian ridges on Mars[J].Icarus,2016,274:99-105. |
28 | 董治宝,吕萍,李超.火星风沙地貌研究方法[J].地球科学进展,2020,35(8):771-788. |
29 | 董治宝,苏志珠,钱广强,等.库姆塔格沙漠风沙地貌[M].北京:科学出版社,2011:484. |
30 | Yang Z, Qian G, Dong Z,et al.Migration of barchan dunes and factors that influence migration in the Sanlongsha dune field of the northern Kumtagh Sand Sea,China[J].Geomorphology,2021,378:107615. |
31 | 杨转玲,钱广强,董治宝,等.库姆塔格沙漠北部三垄沙地区风沙运动特征[J].中国沙漠,2018,38(1):58-67. |
32 | Wang P, Zhang J, Dun H,et al.Aeolian creep transport:theory and experiment[J].Geophysical Research Letters,2020,47(15):e2020GL088644. |
33 | Folk R L, Ward W C.Brazos River bar:a study in the significance of grain size parameters[J].Journal of Sedimentary Petrology,1957,27:3-26. |
34 | Isenberg O, Yizhaq H, Tsoar H,et al.Megaripple flattening due to strong winds[J].Geomorphology,2011,131(3/4):69-84. |
35 | Cheng H, Liu C, Zou X,et al.Aeolian creeping mass of different grain sizes over sand beds of varying length[J].Journal of Geophysical Research:Earth Surface,2015,120(7):1404-1417. |
36 | Namikas S L.Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach[J].Sedimentology,2003,50(2):303-326. |
37 | 董治宝.风沙起动形式与起动假说[J].干旱气象,2005,23(2):64-69. |
38 | Liu B, Jin H, Sun L,et al.Grain size and geochemical study of the surface deposits of the sand dunes in the Mu Us Desert,northern China[J].Geological Journal,2017,52(6):1009-1019. |
39 | Fryberger S G.Dune forms and wind regime[M]//Mckee E D.A Study of Global Sand Seas.Washington,USA:US Geological Survey,1979:137-169. |
40 | Qian G, Yang Z, Dong Z,et al.Long-term measurements of aeolian transport directional variations over a zibar surface in the northern Kumtagh Sand Sea[J].Geomorphology,2020,371:107452. |
41 | Cheng H, He J, Zou X,et al.Characteristics of particle size for creeping and saltating sand grains in aeolian transport[J].Sedimentology,2015,62(5):1497-1511. |
42 | Yizhaq H, Siminovich A, Katra I,et al.Turbulent shear flow over large martian ripples[J].Journal of Geophysical Research:Planets,2021,126(2):e2020JE006515. |
[1] | 郭酉元, 钱广强, 杨转玲, 邢学刚. 库姆塔格沙漠三垄沙地区砾波纹形态、粒度及环境风况[J]. 中国沙漠, 2024, 44(4): 37-45. |
[2] | 缑永涛, 吴永祥, 彭波, 张勇, 孔会平, 赵兴红, 冀鹏举, 李云昊, 何明珠, 邵梅, 谭明亮, 逯军峰. 乌玛高速公路腾格里沙漠段防护体系典型断面风沙活动特征[J]. 中国沙漠, 2024, 44(3): 279-289. |
[3] | 赵宏胜, 高永, 蒙仲举, 李婉娇, 冯霜, 党晓宏. 黄河上游十大孔兑区域风能环境及输沙势特征[J]. 中国沙漠, 2024, 44(3): 85-95. |
[4] | 乌友罕, 殷婕, 武子丰, 哈斯额尔敦. 巴丹吉林-乌兰布和沙漠输沙带新月形沙丘动态[J]. 中国沙漠, 2024, 44(2): 78-89. |
[5] | 李继彦, 徐德华, 张姚姚, 薛倩文, 周玲. 柴达木盆地风能环境特征[J]. 中国沙漠, 2023, 43(5): 223-231. |
[6] | 刘茜雅, 王海兵, 左合君, 温苏雅勒图, 霍海鹰. 巴音温都尔沙漠风况及输沙势特征[J]. 中国沙漠, 2023, 43(5): 41-48. |
[7] | 曲书锋, 张国明, 董苗, 徐俊泉, 尚鹏, 严平, 刘连友, 杜洁雯. 阿尔金山国家级自然保护区东北部风况及输沙势特征[J]. 中国沙漠, 2023, 43(2): 114-120. |
[8] | 杨馥宁, 吕萍, 马芳, 曹敏, 肖南, 顾立霞, 杨迎. 腾格里沙漠南部格状沙丘的形态演变及移动特征[J]. 中国沙漠, 2023, 43(1): 107-115. |
[9] | 顾立霞, 吕萍, 马芳, 陈国祥, 梁准, 许明静, 杨迎. 不同数据源下毛乌素沙地风况及输沙势特征[J]. 中国沙漠, 2022, 42(5): 54-62. |
[10] | 冯净雪, 丁占良, 尤莉, 韩广. 科尔沁沙地西部横向沙丘间的风况和输沙势[J]. 中国沙漠, 2022, 42(4): 110-119. |
[11] | 姜吴彬, 张德国, 杨小平. 沙丘形态及表沙粒度特征对风况和地表植被变化的响应[J]. 中国沙漠, 2022, 42(4): 120-129. |
[12] | 管雪薇, 杨采怡, 刘广明, 汪季, 肖蒙, 丁延龙, 陈金林. 吉兰泰盐湖防护体系阻沙效应及输沙粒度特征[J]. 中国沙漠, 2022, 42(4): 50-59. |
[13] | 落桑曲加, 张焱, 马鹏飞, 扎多, 格多, 张正偲. 雅鲁藏布江中游不同地表输沙量特征[J]. 中国沙漠, 2022, 42(2): 6-13. |
[14] | 李继彦, 郜学敏, 董治宝. 柴达木盆地雅丹地貌区风况数据集[J]. 中国沙漠, 2021, 41(6): 265-268. |
[15] | 高博钰, 杨波, 张德国. U-Net深度卷积神经网络在沙脊线提取中的应用[J]. 中国沙漠, 2021, 41(5): 21-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn