1 |
赵学勇,安沙舟,曹广民,等.中国荒漠主要植物群落调查的意义、现状及方案[J].中国沙漠,2023,43(1):9-19.
|
2 |
李新荣,周海燕,王新平,等.中国干旱沙区的生态重建与恢复:沙坡头站60年重要研究进展综述[J].中国沙漠,2016,36(2):247-264.
|
3 |
王芊,张晓丽,贾斌斌,等.荒漠区植物干旱胁迫响应研究进展[J].乡村科技,2024,15(9):108-113.
|
4 |
Grünzweig J M, De Boeck H J, Rey A,et al.Dryland mechanisms could widely control ecosystem functioning in a drier and warmer world[J].Nature Ecology & Evolution,2022,6(8):1064-1076.
|
5 |
Carpita N, McCann M.The cell wall[M]//Buchanan B,Gruissel W,Jones R.Biochemistry and Molecular Biology of Plants.Rockville,USA:American Society of Plant Physiologists,2000:52-108.
|
6 |
Gong Z, Xiong L, Shi H,et al.Plant abiotic stress response and nutrient use efficiency[J].Science China Life Sciences,2020,63(5):635-674.
|
7 |
黄海霞,王刚,陈年来.荒漠灌木逆境适应性研究进展[J].中国沙漠,2010,30(5):1060-1067.
|
8 |
马淼,李博,陈家宽.植物对荒漠生境的趋同适应[J].生态学报,2006,26(11):3861-3869.
|
9 |
苏培玺,严巧娣.C4荒漠植物梭梭和沙拐枣在不同水分条件下的光合作用特征[J].生态学报,2006,26(1):75-82.
|
10 |
刘玉冰,李新荣,李蒙蒙,等.中国干旱半干旱区荒漠植物叶片(或同化枝)表皮微形态特征[J].植物生态学报,2016,40(11):1189-1207.
|
11 |
赵小仙,李毅,苏世平,等.3个地理种群蒙古沙拐枣同化枝解剖结构及抗旱性比较[J].中国沙漠,2014,34(5):1293-1300.
|
12 |
公维昌,庄丽,赵文勤,等.多枝柽柳与梭梭光合器官形态解剖结构的生态适应性[J].中国沙漠,2011,31(1):129-136.
|
13 |
蒋礼学,李彦.三种荒漠灌木根系的构形特征与叶性因子对干旱生境的适应性比较[J].中国沙漠,2008,28(6):1118-1124.
|
14 |
Sperry J S, Venturas M D, Anderegg W R L,et al.Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost[J].Plant,Cell & Environment,2017,40(6):816-830.
|
15 |
Jin M, Guo M, Yue G,et al.An unusual strategy of stomatal control in the desert shrub Ammopiptanthus mongolicus [J].Plant Physiology and Biochemistry,2018,125:13-26.
|
16 |
郭飞,吉喜斌,金博文,等.干旱区荒漠-绿洲过渡带3种典型灌木气孔导度对环境变化的响应及其对蒸腾的调控[J].高原气象,2021,40(3):632-643.
|
17 |
任昱,魏春光,郭小宇.6种荒漠植物叶片气孔性状比较分析[J].内蒙古农业大学学报(自然科学版),2021,42(2):21-26.
|
18 |
Henry C, John G P, Pan R,et al.A stomatal safety-efficiency trade-off constrains responses to leaf dehydration[J].Nature Communications,2019,10(1):3398.
|
19 |
Tardieu F, Simonneau T.Variability among species of stomatal control under fluctuating soil water status and evaporative demand:modelling isohydric and anisohydric behaviours[J].Journal of Experimental Botany,1998,49:419-432.
|
20 |
Fu X, Meinzer F C.Metrics and proxies for stringency of regulation of plant water status (iso/anisohydry):a global data set reveals coordination and trade-offs among water transport traits[J].Tree Physiology,2019,39(1):122-134.
|
21 |
Ogle K, Lucas R W, Bentley L P,et al.Differential daytime and night-time stomatal behavior in plants from North American deserts[J].New Phytologist,2012,194(2):464-476.
|
22 |
Yao G Q, Li F P, Nie Z F,et al.Ethylene,not ABA,is closely linked to the recovery of gas exchange after drought in four Caragana species[J].Plant,Cell & Environment,2021,44(2):399-411.
|
23 |
魏亚冉.内蒙古高原荒漠区锦鸡儿属(Caragana)四种植物水力结构特征的比较研究[D].天津:天津师范大学,2010.
|
24 |
解李娜,魏亚冉,马成仓,等.内蒙古高原西部荒漠区锦鸡儿属植物水力结构的变化[J].生态学报,2015,35(6):1672-1678.
|
25 |
Lovelock C E, Ball M C, Choat B,et al.Linking physiological processes with mangrove forest structure:phosphorus deficiency limits canopy development,hydraulic conductivity and photosynthetic carbon gain in dwarf Rhizophora mangle [J].Plant,Cell & Environment,2006,29(5):793-802.
|
26 |
Hacke U G.Irradiance-induced changes in hydraulic architecture[J].Botany,2014,92(6):437-442.
|
27 |
Barij N, Cermák J, Stokes A.Azimuthal variations in xylem structure and water relations in Cork Oak (Quercus suber)[J].Iawa Journal,2011,32(1):25-40.
|
28 |
Alameda D, Villar R.Linking root traits to plant physiology and growth in Vahl.seedlings under soil compaction conditions[J].Environmental and Experimental Botany,2012,79:49-57.
|
29 |
Torres-Ruiz J M, Diaz-Espejo A, Chamorro V,et al.Influence of the water treatment on the xylem anatomy and functionality of current year shoots of Olive Trees[C]//Fernandez J E,Ferreira M I.Xxviii International Horticultural Congress on Science and Horticulture for People.2011:203-208.
|
30 |
Esteban L G, de Palacios P, Gasson P,et al.Hardwoods:anatomy and functionality of their elements:a short review[J].Forests,2024,15(7):1162.
|
31 |
Jansen S, Baas P, Gasson P,et al.Vestured pits:do they promote safer water transport?[J].International Journal of Plant Sciences,2003,164(3):405-413.
|
32 |
王剑博.干旱-复水条件下红砂幼苗碳水动态特征研究[D].兰州:甘肃农业大学,2024.
|
33 |
Li S, Lens F, Espino S,et al.Intervessel pit membrane thickness as a key determinant of embolism resistance in angiosperm xylem[J].IAWA Journal / International Association of Wood Anatomists,2016,37:152-171.
|
34 |
Jansen S, Baas P, Gasson P,et al.Variation in xylem structure from tropics to tundra:evidence from vestured pits[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(23):8833-8837.
|
35 |
Pittermann J.The evolution of water transport in plants:an integrated approach[J].Geobiology,2010,8(2):112-139.
|
36 |
Hacke U G, Sperry J S.Limits to xylem refilling under negative pressure in and[J].Plant,Cell & Environment,2003,26(2):303-311.
|
37 |
Jacobsen A L.Diversity in conduit and pit structure among extant gymnosperm taxa[J].American Journal of Botany,2021,108(4):559-570.
|
38 |
Jupa R, Plavcová L, Flamiková B,et al.Effects of limited water availability on xylem transport in liana L[J].Environmental and Experimental Botany,2016,130(2016):22-32.
|
39 |
McElrone A J, Pockman W T, Martínez-Vilalta J,et al.Variation in xylem structure and function in stems and roots of trees to 20 m depth[J].New Phytologist,2004,163(3):507-517.
|
40 |
邵畅畅,段洪浪,赵熙州,等.树木干旱死亡点预测及致死生理机制研究进展[J].植物生态学报,2025,49(2):221-231.
|
41 |
Yao G Q, Li Y R, Duan Y N,et al.Stomatal and hydraulic redundancy allows woody species to adapt to arid environments[J].Plant,Cell & Environment,2025,48(5):3406-3414.
|
42 |
Zhang H, Li W, Adams H D,et al.Responses of woody plant functional traits to nitrogen addition:a meta-analysis of leaf economics,gas exchange,and hydraulic traits[J].Frontiers in Plant Science,2018,9:683.
|
43 |
张红霞,袁凤辉,关德新,等.维管植物木质部水分传输过程的影响因素及研究进展[J].生态学杂志,2017,36(11):3281-3288.
|
44 |
Sperry J S.Evolution of water transport and xylem structure[J].International Journal of Plant Sciences,2003,164(S3):S115-S127.
|
45 |
Brodribb T J, Bourbia I.Deadly predictions in trees[J].Tree Physiology,2025,45(1):155.
|
46 |
张志山,韩高玲,霍建强,等.固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J].植物生态学报,2023,47(10):1422-1431.
|
47 |
周洪华,李卫红.胡杨木质部水分传导对盐胁迫的响应与适应[J].植物生态学报,2015,39(1):81-91.
|
48 |
鱼腾飞,冯起,司建华,等.胡杨根系水力再分配的模式、大小及其影响因子[J].北京林业大学学报,2014,36(2):22-29.
|
49 |
Huo J, Shi Y, Chen J,et al.Hydraulic trade-off and coordination strategies mediated by leaf functional traits of desert shrubs[J].Frontiers in Plant Science,2022,13:938758.
|
50 |
Yao G Q, Nie Z F, Zeng Y Y,et al.A clear trade-off between leaf hydraulic efficiency and safety in an aridland shrub during regrowth[J].Plant,Cell & Environment,2021,44(10):3347-3357.
|
51 |
Huo J, Li C, Zhao Y,et al.Hydraulic mechanism of limiting growth and maintaining survival of desert shrubs in arid habitats[J].Plant Physiology,2024,196(4):2450-2462.
|
52 |
Zhang H X, McDowell N G, Li X R,et al.Hydraulic safety and growth rather than climate of origin influence survival in desert shrubs and trees[J].Forest Ecology and Management,2023,543:121130.
|
53 |
李磊,贾志清,朱雅娟,等.我国干旱区植物抗旱机理研究进展[J].中国沙漠,2010,30(5):1053-1059.
|
54 |
宋维民.CO2浓度升高和UV-B辐射增强对沙坡头优势植物光合作用的影响[D].北京:中国科学院大学,2008.
|
55 |
任建武,白伟岚.石斛属植物光合碳同化途径地理分异研究进展[J].生物技术进展,2015,5(1):35-40.
|
56 |
饶德民,董青松,程彤,等.作物光合效率对逆境适应及提高途径研究进展[J].植物生理学报,2024,60(8):1229-1240.
|
57 |
李耀琪,王志恒.植物叶片形态的生态功能、地理分布与成因[J].植物生态学报,2021,45(10):1154-1172.
|
58 |
王海珍,韩路,徐雅丽,等.胡杨异形叶光合作用对光强与CO2浓度的响应[J].植物生态学报,2014,38(10):1099-1109.
|
59 |
张斌,李从娟,易光平,等.梭梭和头状沙拐枣形态及生理生化特性对干旱胁迫的响应[J].干旱区研究,2024,41(7):1177-1184.
|
60 |
Zhang Y, Wang L, Li X,et al.Synergistic effects of exogenous IAA and melatonin on seed priming and physiological biochemistry of three desert plants in saline-alkali soil[J].Plant Signal & Behavior,2024,19(1):2379695.
|
61 |
Mittler R, Zandalinas S I, Fichman Y,et al.Reactive oxygen species signalling in plant stress responses[J].Nature Reviews:Molecular Cell Biology,2022,23(10):663-679.
|
62 |
Spormann S, Soares C, Azenha M,et al.A look into osmotic,ionic,and redox adjustments in wild tomato species under combined salt and water stress[J].Plant Stress,2024,13:100510.
|
63 |
郭楠楠,陈学林,张继,等.柽柳组培苗抗氧化酶及渗透调节物质对NaCl胁迫的响应[J].西北植物学报,2015,35(8):1620-1625.
|
64 |
Panda A, Rangani J, Parida A K.Physiological and metabolic adjustments in the xero-halophyte Haloxylon salicornicum conferring drought tolerance[J].Physiologia Plantarum,2021,172(2):1189-1211.
|
65 |
Clifford S C, Arndt S K, Corlett J E,et al.The role of solute accumulation,osmotic adjustment and changes in cell wall elasticity in drought tolerance in (Lamk)[J].Journal of Experimental Botany,1998,49(323):967-977.
|
66 |
Ullah A, Tariq A, Sardans J,et al. Calligonum mongolicum employs a variety of physiological and biochemical strategies to acclimatize to hyperarid saline deserts[J].Acta Physiologiae Plantarum,2025,47(1):9.
|
67 |
郑清岭,杨冬艳,刘建文,等.干旱胁迫对沙芥和斧形沙芥幼苗生长及抗氧化系统的影响[J].植物生理学报,2017,53(4):600-608.
|
68 |
Liu Y, Qu Y, Wang S,et al.Mechanical wounding improves salt tolerance by maintaining root ion homeostasis in a desert shrub[J].Plant Science,2024,348:112213.
|
69 |
姬江莉,种培芳,李毅,等.红砂对CO2浓度升高及降水变化的生理生长响应[J].西北植物学报,2017,37(5):923-932.
|
70 |
张雯莉,刘玉冰.不同外源缓解物质对混合盐胁迫下两种枸杞生理特性的影响[J].兰州大学学报(自然科学版),2020,56(3):319-325.
|
71 |
尹本丰,张元明.冻融过程对荒漠区不同微生境下齿肋赤藓渗透调节物含量和抗氧化酶活力的影响[J].植物生态学报,2015,39(5):517-529.
|
72 |
黄海霞,连转红,王亮,等.裸果木渗透调节物质和抗氧化酶活性对干旱的响应[J].干旱区研究,2020,37(1):227-235.
|
73 |
蔡建一,马清,周向睿,等.Na+在霸王适应渗透胁迫中的生理作用[J].草业学报,2011,20(1):89-95.
|
74 |
李柯,周庄煜,李四菊,等.荆芥的生长、渗透调节和抗氧化能力对干旱胁迫的响应[J].草业学报,2020,29(5):150-158.
|
75 |
郝文芳,周禧琳,王海珍,等.濒危植物小沙冬青研究进展[J].植物科学学报,2019,37(1):109-115.
|
76 |
张继伟.沙蓬栽培品系筛选及重要性状初步研究[D].北京:中国科学院大学,2019.
|
77 |
庞志强,余迪求.干旱胁迫下的植物根系-微生物互作体系及其应用[J].植物生理学报,2020,56(2):109-126.
|
78 |
伊帕热·帕尔哈提,祖力胡玛尔·肉孜,田永芝,等.荒漠植物内生菌多样性及其增强农作物抗旱和耐盐性的研究进展[J].生物技术通报,2022,38(12):88-99.
|
79 |
Gajardo H A, Morales M, Larama G,et al.Physiological,transcriptomic and metabolomic insights of three extremophyte woody species living in the multi-stress environment of the Atacama Desert[J].Planta,2024,260(3):55.
|
80 |
李瑞雪,孙任洁,汪泰初,等.植物抗旱性鉴定评价方法及抗旱机制研究进展[J].生物技术通报,2017,33(7):40-48.
|
81 |
刘美玲.红砂叶片中基因表达及形态结构特征对干旱胁迫[D].北京:中国科学院大学,2015.
|
82 |
王进.盐胁迫下盐芥悬浮细胞程序性死亡的信号转导[D].北京:中国科学院大学,2010.
|
83 |
刘建凤,姚莹,赵婕,等.沙棘抗虫性机制及其分子育种研究进展[J].中国农业科技导报,2020,22(8):108-115.
|
84 |
Wu Z, Jiang Z, Li Z,et al.Multi-omics analysis reveals spatiotemporal regulation and function of heteromorphic leaves in Populus[J].Plant Physiology,2023,192(1):188-204.
|