Please wait a minute...
img

官方微信

高级检索
中国沙漠  2020, Vol. 40 Issue (5): 120-129    DOI: 10.7522/j.issn.1000-694X.2020.00005
    
毛乌素沙地植被水分利用效率的时空格局
王姣月a(),秦树高a2,张宇清a2()
1.北京林业大学,水土保持学院/宁夏盐池毛乌素沙地生态系统国家定位观测研究站,北京 100083
2.北京林业大学,林业生态工程教育部工程中心,北京 100083
Spatial-temporal patterns of vegetation water use efficiency in the Mu Us Desert
Jiaoyue Wanga(),Shugao Qina2,Yuqing Zhanga2()
a.School of Soil and Water Conservation/Yanchi Research Station // b. MOE Engineering Research Center of Forestry Ecological Engineering,Beijing Forestry University,Beijing 100083,China
 全文: PDF(5690 KB)   HTML
摘要:

水分利用效率(WUE)是衡量生态系统碳水循环耦合程度的重要指标,明晰其动态变化规律有助于判断区域植被生态建设是否与当地的自然条件相适应。利用基于CASA(Carnegie-Ames-Stanford Approach)模型得到的植被净初级生产力(NPP)数据和MODIS系列产品中的蒸散发(ET)数据,估算了2001—2016年毛乌素沙地植被的WUE,并探讨了其时空演变特征及与气象因子的关系。结果显示:(1)WUE的多年平均值为0.62 gC·mm-1·m-2,空间上自东向西递减,在不同植被类型间表现为栽培植物>灌丛>草甸>草原>荒漠;(2)WUE以0.009 gC·mm-1·m-2·a-1的速率上升,东部地区变化尤为显著,NPP的快速增长是WUE呈增加趋势的主要原因;(3)WUE与各气象因子的相关程度由大至小依次为太阳辐射、降水量、风速和气温,分布在西部地区的荒漠植被WUE受气象因子影响最小。经过一系列生态建设工程的治理,毛乌素沙地大部分地区自2001年以来NPPWUE均呈增加趋势,即生态系统在变“绿”的同时还实现了水分的高效利用,有利于当地生态环境的健康发展;但在水热条件较差的中西部地区,新建设的植被生长缓慢且导致蒸散发产生强烈变化,使WUE呈减少趋势,暴露出植被建设规模与水资源承载能力不匹配的问题,需引起格外重视。

关键词: 水分利用效率CASA模型气象因子毛乌素沙地    
Abstract:

Water use efficiency (WUE) is a key proxy for linking carbon and water exchange processes in terrestrial ecosystems. Understanding the spatial-temporal variations in WUE helps to evaluate the adaptability of vegetation to local environmental conditions. This study estimated the vegetation WUE in the Mu Us Desert during 2001-2016 using remote-sensing data and meteorological observations. Carbon sequestration (i.e., net primary productivity, NPP) was estimated based on the Carnegie-Ames-Stanford Approach (CASA) model, while water consumption (i.e., evapotranspiration, ET) was obtained from the MODIS product. The spatial-temporal patterns of WUE and their responses to meteorological factors were investigated by trend analysis and correlation analysis, respectively. The results showed that: (1) the mean annual WUE across the Mu Us Desert was 0.62 gC·mm-1·m-2 with a trend of decrease from the east to the west, and among different vegetation types, the values of WUE ranked in the order of cultivated vegetation>shrub>meadow>steppe>desert; (2) WUE increased at the rate of 0.009 gC·mm-1·m-2·yr-1 during the study period, especially significantly in eastern, and the increase in WUE mainly attributed to the rapid rise in NPP; and (3) the relationships between WUE and meteorological factors followed a sequence of solar radiation, precipitation, wind speed, and air temperature from strong to weak, and there were relatively insignificant relationships between WUE and meteorological factors in the western part of the Mu Us Desert. The study highlight that the revegetation programs implemented in the Mu Us Desert have achieved good outputs that both NPP and WUE have increased since 2001, which contributed to the improvement of local ecological environment; however, in the central and western part of the Mu Us Desert with poor condition of water and heat, the mismatch between revegetation magnitude and water should be paid more attention.

Key words: water use efficiency (WUE    CASA model    meteorological factors    Mu Us Desert
收稿日期: 2020-01-08 出版日期: 2020-09-28
ZTFLH:  Q945.79  
基金资助: 国家重点研发计划课题(2016YFC0500905)
通讯作者: 张宇清     E-mail: 1980904137@qq.com;zhangyqbjfu@gmail.com
作者简介: 王姣月(1994—),女,吉林长春人,硕士研究生,主要从事荒漠化防治研究。E-mail: 1980904137@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王姣月
秦树高
张宇清

引用本文:

王姣月,秦树高,张宇清. 毛乌素沙地植被水分利用效率的时空格局[J]. 中国沙漠, 2020, 40(5): 120-129.

Jiaoyue Wang,Shugao Qin,Yuqing Zhang. Spatial-temporal patterns of vegetation water use efficiency in the Mu Us Desert. Journal of Desert Research, 2020, 40(5): 120-129.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2020.00005        http://www.desert.ac.cn/CN/Y2020/V40/I5/120

图1  毛乌素沙地的地理位置及主要植被类型分布
计算公式参数说明编号
NPPx,t=APAR(x,t)×ε(x,t)NPP为净初级生产力(gC·m-2);APAR为光合有效辐射(MJ·m-2);ε为实际光能利用率(gC·MJ-1(1)
APAR(x,t)=SOL(x,t)×FPAR(x,t)×αSOL为太阳总辐射量(MJ·m-2);FPAR为植被层对入射的光合有效辐射的吸收比例,本文选用Potter等[27]提出的计算方法;α为调整系数,取值0.5,表示植被所能利用的太阳有效辐射(波长为0.38?~?0.71 μm)占太阳总辐射的比例(2)
FPAR(x,t)=min(SR-SRmin)/(SRmax-SRmin),0.95SR为简单比值植被指数;SRminSRmax分别对应某种植被类型NDVI在5%和95%处的下侧百分位数,本文根据朱文泉等[29]的研究结果,取经验常数1.05和4.49(3)
SRx,t=1+NDVI(x,t)/1-NDVI(x,t)NDVI为归一化植被指数(4)
εx,t=Tε1(x,t)×Tε2(x,t)×Wε(x,t)×εmaxTε1Tε2为低温和高温对光能利用率的胁迫影响系数;Wε表示水分对光能利用率的胁迫影响系数;εmax为理想条件下植被的最大光能利用率(gC·MJ-1),本文应用朱文泉等[29]提出的εmax参数集,设置各植被类型具体取值如下:灌丛为0.429 gC·MJ-1,草地、耕作植被和其他均为0.542 gC·MJ-1(5)
Tε1x,t=0.8+0.02×Topt(x)-0.0005×Topt(x)2Topt为植被生长的最适温度(℃),表示为某一区域一年内NDVI达到最高时的当月平均气温,当月平均气温小于等于0 ℃时则该指标取值为0(6)
Tε2(x,t)=1.184/1+exp?0.2×(Topt(x)-10-T(x,t))×1/1+exp?0.3×(-Topt(x)-10+T(x,t))T为当月平均气温(℃),当某月平均气温T比最适温度Topt高10 ℃或低13 ℃时,该月的Tε2值取最适温度月份Tε2值的1/2(7)
Wεx,t=0.5+0.5×ET(x,t)/PET(x,t)ETPET分别为区域实际蒸散发(mm)和区域潜在蒸散发(mm)(8)
表1  基于CASA模型的NPP计算
图2  2001—2016年毛乌素沙地WUE多年平均值的空间分布
图3  2001—2016年毛乌素沙地WUE的年际变化(A)及不同植被类型间WUE的变化趋势(B)
图4  2001—2016年毛乌素沙地WUE变化趋势显著性的空间分布(A)及在不同植被类型中的面积比例(B)
图5  毛乌素沙地NPP、ET和WUE变化趋势叠加类型的空间分布“+”表示在研究时段内呈增加趋势,“-”表示呈减少趋势
图6  2001—2016年毛乌素沙地降水量、气温、太阳辐射和风速多年平均值的空间分布
图7  2001—2016年毛乌素沙地WUE与各气象因子相关系数的空间分布及其显著性检验结果在不同植被类型中的面积比例
1 朴世龙,方精云.1982-1999年我国陆地植被活动对气候变化响应的季节差异[J].地理学报,2003,58(1):119-125.
2 Gerten D,Schaphoff S,Haberlandt U,et al.Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model[J].Journal of Hydrology,2004,286(1):249-270.
3 Feng X M,Fu B J,Piao S L,et al.Revegetation in China’s Loess Plateau is approaching sustainable water resource limits[J].Nature Climate Change,2016,6(11):1019-1022.
4 Griggs D,Stafford-Smith M,Gaffney O,et al.Sustainable development goals for people and planet[J].Nature,2013,495(7441):305-307.
5 Huang M T,Piao S L,Sun Y,et al.Change in terrestrial ecosystem water-use efficiency over the last three decades[J].Global Change Biology,2015,21(6):2366-2378.
6 Fischer R A,Turner N C.Plant productivity in the arid and semiarid zones[J].Annual Review of Plant Physiology,1978,29(1):277-317.
7 Niu S L,Xing X,Zhang Z,et al.Water-use efficiency in response to climate change:from leaf to ecosystem in a temperate steppe[J].Global Change Biology,2011,17(2):1073-1082.
8 Abraha M,Gelfand I,Hamilton S K,et al.Ecosystem water-use efficiency of annual corn and perennial grasslands:contributions from land-use history and species composition[J]. Ecosystems,2016,19(6):1001-1012.
9 Keenan T F,Hollinger D Y,Bohrer G,et al.Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise[J].Nature,2013,499(7458):324-327.
10 Huang L,He B,Han L,et al.A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data[J].Science of the Total Environment,2017,601-602:1097-1107.
11 Huang M T,Piao S L,Zeng Z Z,et al.Seasonal responses of terrestrial ecosystem water-use efficiency to climate change[J].Global Change Biology,2016,22(6):2165-2177.
12 Ponce-Campos G E,Moran M S,Huete A,et al.Ecosystem resilience despite large-scale altered hydroclimatic conditions[J].Nature,2013,494(7437):349-352.
13 Sun Y,Piao S L,Huang M T,et al.Global patterns and climate drivers of water-use efficiency in terrestrial ecosystems deduced from satellite‐based datasets and carbon cycle models[J].Global Ecology and Biogeography,2016,25(3):311-323.
14 李双成,蔡运龙.地理尺度转换若干问题的初步探讨[J].地理研究,2005,24(1):11-18.
15 李肖娟,张福平,王虎威,等.黑河流域植被水分利用效率时空变化特征及其与气候因子的关系[J].中国沙漠,2017,37(4):733-741.
16 Hu Z M,Yu G R,Fu Y L,et al.Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China[J].Global Change Biology,2008,14(7):1609-1619.
17 Runnstr?m M C.Rangeland development of the Mu Us Sandy Land in semiarid China:an analysis using Landsat and NOAA remote sensing data[J].Land Degradation & Development,2003,14(2):189-202.
18 Wu B,Ci L J.Landscape change and desertification development in the Mu Us Sandland, northern China[J].Journal of Arid Environments,2002,50(3):429-444.
19 杨根生,刘连友,陈渭南.黄河中游风沙区风沙活动对黄河若干支流泥沙的影响[J].干旱区资源与环境,1988(2):38-47.
20 Liang P,Yang X P.Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land,northern China and their impact factors[J]. Catena,2016,145:321-333.
21 郭紫晨,刘树林,康文平,等.2000—2015年毛乌素沙区植被覆盖度变化趋势[J].中国沙漠,2018,38(5):203-211.
22 Li Y R,Cao Z,Long H L,et al.Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban-rural development:the case of Mu Us Sandy Land,China[J].Journal of Cleaner Production,2017,142:697-715.
23 Chen Y P,Wang K B,Lin Y S,et al.Balancing green and grain trade[J].Nature Geoscience,2015,8(10):739-741.
24 Zhang J T,Zhang Y Q,Qin S G,et al.Effects of seasonal variability of climatic factors on vegetation coverage across drylands in northern China[J].Land Degradation & Development, 2018,29(6):1782-1791.
25 赵媛媛,丁国栋,高广磊,等.毛乌素沙区沙漠化土地防治区划[J].中国沙漠,2017,37(4):635-643.
26 白壮壮,崔建新.近2000a毛乌素沙地沙漠化及成因[J].中国沙漠,2019,39(2):180-188.
27 Potter C S,Randerson J T,Field C B,et al.Terrestrial ecosystem production:a process model based on global satellite and surface data[J].Global Biogeochemical Cycles,1993,7(4):811-841.
28 Field C B,Randerson J T,Malmstr?m C M.Global net primary production:combining ecology and remote sensing[J].Remote Sensing of Environment,1995,51(1):74-88.
29 朱文泉,潘耀忠,张锦水.中国陆地植被净初级生产力遥感估算[J].植物生态学报,2007,31(3):413-424.
30 杜晓铮,赵祥,王昊宇,等.陆地生态系统水分利用效率对气候变化的响应研究进展[J].生态学报,2018,38(23):33-42.
31 Zheng H,Lin H,Zhu X J,et al.Divergent spatial responses of plant and ecosystem water-use efficiency to climate and vegetation gradients in the Chinese Loess Plateau[J].Global and Planetary Change,2019,181:102995.
32 Maxwell T M,Silva L C R,Horwath W R.Integrating effects of species composition and soil properties to predict shifts in montane forest carbon-water relations[J].Proceedings of the National Academy of Sciences,2018,115(18):E4219-E4226.
33 Zhang J M,Jiang H,Song X Z,et al.The responses of plant leaf CO2/H2O exchange and water use efficiency to drought:a meta-analysis[J].Sustainability,2018,10(2):551.
34 Scott R L,Biederman J A.Partitioning evapotranspiration using long-term carbon dioxide and water vapor fluxes[J].Geophysical Research Letters,2017,44(13):6833-6840.
35 Wei Z W,Yoshimura K,Wang L X,et al.Revisiting the contribution of transpiration to global terrestrial evapotranspiration[J].Geophysical Research Letters,2017,44(6):2792-2801.
36 Zhang Y,Peng C H,Li W Z,et al.Multiple afforestation programs accelerate the greenness in the ‘Three North’ region of China from 1982 to 2013[J].Ecological Indicators,2016,61:404-412.
37 Wang H,Liu G H,Li Z S,et al.Impacts of climate change on net primary productivity in arid and semiarid regions of China[J].Chinese Geographical Science,2016,26(1):35-47.
38 Wang F,Pan X B,Gerlein-Safdi C,et al.Vegetation restoration in Northern China:a contrasted picture[J].Land Degradation & Development,2019,31(6):3314.
39 Gao Y,Zhu X J,Yu G R,et al.Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation[J].Agricultural and Forest Meteorology,2014,195:32-37.
40 Ma X F,Zhao C Y,Yan W,et al.Influences of 1.5 ℃ and 2.0 ℃ global warming scenarios on water use efficiency dynamics in the sandy areas of northern China[J].Science of the Total Environment,2019,664:161-174.
41 Gang C C,Zhang Y,Guo L,et al.Drought-induced carbon and water use efficiency responses in dryland vegetation of northern China[J].Frontiers in Plant Science,2019,10:224.
42 Shao Y Y,Zhang Y Q,Wu X Q,et al.Relating historical vegetation cover to aridity patterns in the greater desert region of northern China:implications to planned and existing restoration projects[J].Ecological indicators,2018,89:528-537.
[1] 周虹,吴波,高莹,成龙,贾晓红,庞营军,赵河聚. 毛乌素沙地臭柏Sabina vulgaris群落生物土壤结皮细菌群落组成及其影响因素[J]. 中国沙漠, 2020, 40(5): 130-141.
[2] 许明静,吕萍,肖南,杨军怀,刘铮瑶,冯淼彦,梁准. 毛乌素沙地西北部植被覆盖对沙丘移动的影响[J]. 中国沙漠, 2020, 40(4): 71-80.
[3] 李端, 司建华, 张小由, 高雅玉, 罗欢, 秦洁, 任立新. 胡杨(Populus euphratica)对干旱胁迫的生态适应[J]. 中国沙漠, 2020, 40(2): 17-23.
[4] 李想, 苏志珠, 马义娟, 张彩霞, 柳苗苗. 毛乌素沙地东南缘全新世气候不稳定性[J]. 中国沙漠, 2020, 40(2): 109-117.
[5] 李霞, 刘廷玺, 段利民, 王冠丽, 童新, 周亚军, 杨晓君. 科尔沁湿草甸参考作物蒸散发模拟分析[J]. 中国沙漠, 2020, 40(2): 134-143.
[6] 徐丹蕾, 丁靖南, 伍永秋. 1989-2014年毛乌素沙地湖泊面积[J]. 中国沙漠, 2019, 39(6): 40-47.
[7] 岳喜元, 左小安, 常学礼, 徐翀, 吕朋, 张晶, 赵生龙, 程清平. 内蒙古典型草原与荒漠草原NDVI对气象因子的响应[J]. 中国沙漠, 2019, 39(3): 25-33.
[8] 李璠, 肖建设, 祁栋林, 李林. 柴达木盆地沙尘暴天气影响因素[J]. 中国沙漠, 2019, 39(2): 144-150.
[9] 白壮壮, 崔建新. 近2 000 a毛乌素沙地沙漠化及成因[J]. 中国沙漠, 2019, 39(2): 177-185.
[10] 韩瑞, 苏志珠, 李想, 柳苗苗, 马义娟. 粒度和磁化率记录的毛乌素沙地东缘全新世气候变化[J]. 中国沙漠, 2019, 39(2): 105-114.
[11] 庞营军, 吴波, 贾晓红, 石麟, 高达布希拉图, 李世忠. 毛乌素沙地风况及输沙势特征[J]. 中国沙漠, 2019, 39(1): 62-67.
[12] 刘振宇, 靳鹤龄, 刘冰, 薛文萍. 粒度特征揭示的中全新世以来毛乌素沙地演化过程[J]. 中国沙漠, 2019, 39(1): 88-96.
[13] 徐翀, 庾强, 左小安, 张春萍, 牛得草. 氮素添加对草原不同冠层植物光合作用的影响[J]. 中国沙漠, 2019, 39(1): 135-141.
[14] 牛亚毅, 李玉强, 王旭洋, 龚相文, 杨欢. 沙地玉米水分利用效率日变化特征[J]. 中国沙漠, 2019, 39(1): 142-148.
[15] 罗凤敏, 高君亮, 辛智鸣, 郝玉光, 王丽娜, 李帅. 乌兰布和沙漠东北缘地温变化特征及其影响因子[J]. 中国沙漠, 2019, 39(1): 179-186.