Please wait a minute...
img

官方微信

高级检索
中国沙漠  2017, Vol. 37 Issue (6): 1051-1058    DOI: 10.7522/j.issn.1000-694X.2016.00106
沙漠与沙漠化     
风沙流起动阶段沙粒输运特征
亢力强, 张军杰, 邹学勇, 张春来, 程宏
北京师范大学 地表过程与资源生态国家重点实验室/防沙治沙教育部工程研究中心, 北京 100875
Characteristics of Sand Transport during Initiation Process of Aeolian Sand Transport
Kang Liqiang, Zhang Junjie, Zou Xueyong, Zhang Chunlai, Cheng Hong
State Key Laboratory of Earth Surface Processes and Resource Ecology/MOE Engineering Center of Desertification and Blown-sand Control, Beijing Normal University, Beijing 100875, China
 全文: PDF(5520 KB)  
摘要: 为了探究风沙流起动过程中沙粒输运特征,利用PTV测量技术在风洞中对风沙流起动过程进行了测量,分析了沙粒空间分布、沙粒平均水平速度、输沙率、沙粒数密度和输沙通量随时间的变化规律。结果表明:风沙流起动时间大约为1.5 s。起动过程中,输沙率随时间迅速增加,气流中沙粒总数目随时间的变化可表示为指数函数,沙粒数密度和输沙通量随高度的变化均可近似表示为负指数衰减函数。在t=1.0 s时刻的沙粒平均水平速度大于相同高度处以后时刻的沙粒平均水平速度,同一高度处t=1.5 s以后的沙粒数密度大于t=0.5 s、1.0 s时刻的沙粒数密度,同一高度处t=1.5 s以后的输沙通量大于t=1.0 s时刻的输沙通量。沙粒数密度随高度的衰减率一般随时间的增加而减小,并在t=1.5 s后逐渐接近稳定值。
关键词: 风沙流起动风洞实验    
Abstract: In order to further explore the characteristics of sand transport during the initiation process of aeolian sand transport, the developing process of initiation of aeolian sand transport was measured by PTV (particle tracking velocimetry) technology in a wind tunnel. The variation of particle space distribution, the horizontal particle velocity, sand transport rate, particle number density and sand flux with time is analyzed. The result shows that the time consumption is about 1.5 s for the initiation process of aeolian sand transport. During the initiation process, the sand transport rate increases rapidly with time, the total particle number in air increases exponentially with time, and the variation of both particle number density and sand flux with height can be approximately expressed by a negative exponential function. At the same height, the mean horizontal particle velocity at t=1.0 s is larger than that after this time, the particle number density after t=1.5 s is larger than that at t=0.5 s and 1.0 s, and the sand flux after t=1.5 s is more than that at t=1.0 s. The decay rate of particle number density with height generally decreases with time, and approximates to a constant after t=1.5 s.
Key words: aeolian sand transport    initiation    wind tunnel experiment
收稿日期: 2016-06-15 出版日期: 2017-11-20
:  X169  
基金资助: 国家自然科学基金项目(41330746,41271020)
作者简介: 亢力强(1976-),男,河北人,博士,研究方向为风沙物理。E-mail:kangliqiang@bnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
亢力强
张军杰
邹学勇
张春来
程宏

引用本文:

亢力强, 张军杰, 邹学勇, 张春来, 程宏. 风沙流起动阶段沙粒输运特征[J]. 中国沙漠, 2017, 37(6): 1051-1058.

Kang Liqiang, Zhang Junjie, Zou Xueyong, Zhang Chunlai, Cheng Hong. Characteristics of Sand Transport during Initiation Process of Aeolian Sand Transport. JOURNAL OF DESERT RESEARCH, 2017, 37(6): 1051-1058.

链接本文:

http://119.78.100.150/zgsm/CN/10.7522/j.issn.1000-694X.2016.00106        http://119.78.100.150/zgsm/CN/Y2017/V37/I6/1051

[1] 吴正等.风沙地貌与治沙工程学[M].北京:科学出版社,2003.
[2] Zou X Y,Wang Z L,Hao Q Z,et al.The distribution of velocity and energy of saltating sand grains in a wind tunnel[J].Geomorphology,2001,36:155-165.
[3] Dong Z B,Liu X P,Wang H T,et al.Aeolian sand transport:a wind tunnel model[J].Sedimentary Geology,2003,161:71-83.
[4] Liu X P,Dong Z B.Experimental investigation of the concentration profile of a blowing sand cloud[J].Geomorphology,2004,60:371-381.
[5] Kang L Q,Zhao G D,Zou X Y,et al.An improved particle counting method for particle volume concentration in aeolian sand transport[J].Powder Technology,2015,280:191-200.
[6] Kang L Q,Guo L J,Liu D Y.Reconstructing the vertical distribution of the aeolian saltation mass flux based on the probability distribution of lift-off velocity[J].Geomorphology,2008,96:1-15.
[7] Butterfield G R.Transitional behaviour of saltation:wind tunnel observations of unsteady winds[J].Journal of Arid Environments,1998,39:377-394.
[8] 赵国丹,亢力强,邹学勇,等.稳态风沙流中沙粒体积浓度的模型分析[J].中国沙漠,2015,35(5):1113-1119.
[9] Davidson-Arnott R G D,MacQuarrie K,Aagaard T.The effect of wind gusts,moisture content and fetch length on sand transport on a beach[J].Geomorphology,2005,68:115-129.
[10] Ellis J T,Sherman D J,Farrell E J,et al.Temporal and spatial variability of aeolian sand transport:implications for field measurements[J].Aeolian Research,2012,3:379-387.
[11] Davidson-Arnott R G D,Bauer B O,Walker I J,et al.High-frequency sediment transport responses on a vegetated foredune[J].Earth Surface Processes and Landforms,2012,37:1227-1241.
[12] Anderson R S,Haff P K.Simulation of eolian saltation[J].Science,1988,241:820-823.
[13] Anderson R S,Haff P K.Wind modification and bed response during saltation of sand in air[M]//Barndorff-Nielsen O E,Willetts B B.Aeolian Grain Transport 1.Acta Mechanica Supplementum.Vienna,Austria:Springer,1991:21-51.
[14] Spies P-J,McEwan I K,Butterfield G R.One-dimensional transitional behaviour in saltation[J].Earth Surface Processes and Landforms,2000,25:505-518.
[15] Kang L Q,Guo L J.Eulerian-Lagrangian simulation of aeolian sand transport[J].Powder Technology,2006,162(2):111-120.
[16] Tong D,Huang N.Numerical simulation of saltating particles in atmospheric boundary layer over flat bed and sand ripples[J].Journal of Geophysical Research,2012,117:D16205.
[17] Zheng X J,Huang N,Zhou Y.The effect of electrostatic force on the evolution of sandsaltation cloud[J].European Physical Journal E,2006,19:129-138.
[18] Al-awadhi J M,Willetts B B.Transient sand transport rates after wind tunnel start-up [J].Earth Surface Processes and Landforms,1998,22:21-30.
[19] Dong Z B,Qian G Q,Luo W Y,et al.Analysis of the mass flux profiles of an aeolian saltating cloud[J].Journal of Geophysical Research-Atmospheres,2006,111:D16111.
[20] Creyssels M,Dupont P,Ould El Moctar A,et al.Saltating particles in a turbulent boundary layer:experiment and theory[J].Journal of Fluid Mechanics,2009,625:47-74.
[21] 佟鼎,黄宁.天然混合沙运动速度特征的风洞PIV实验[J].工程力学,2011,28(7):229-237.
[1] 杨转玲, 钱广强, 董治宝, 罗万银, 张正偲, 逯军峰, 李继彦. 库姆塔格沙漠北部三垄沙地区风沙运动特征[J]. 中国沙漠, 2018, 38(1): 58-67.
[2] 谭凤翥, 王雪芹, 王海峰, 徐俊荣, 袁鑫鑫. 柽柳灌丛沙堆三维流场随背景植被变化的风洞实验[J]. 中国沙漠, 2018, 38(1): 48-57.
[3] 黎小娟, 周智彬, 李宁, 鲁晶晶, 丁新原, 朱海, 王利界. 尼龙网方格沙障风沙流携沙粒度的空间分异特征[J]. 中国沙漠, 2018, 38(1): 76-84.
[4] 赵哈林, 李瑾, 周瑞莲, 云建英, 冯静, 苏娜. 风沙流短暂吹袭对樟子松(Pinus sylvestris var. mongolica)幼苗光合蒸腾特性的影响[J]. 中国沙漠, 2017, 37(2): 254-260.
[5] 高咏晴, 亢力强, 张军杰, 邹学勇, 张春来, 程宏. 风沙流和净风场中瞬时水平风速廓线特征比较[J]. 中国沙漠, 2017, 37(1): 48-56.
[6] 边凯, 张伟民, 谭立海, 高扬. 偏西风作用下敦煌月牙泉金字塔沙山顶部风沙流初步观测研究[J]. 中国沙漠, 2016, 36(6): 1503-1511.
[7] 陈新闯, 董智, 李锦荣, 李红丽, 郭建英, 贾淑友, 代豫杰. 乌兰布和沙漠不同下垫面冬季沙尘通量[J]. 中国沙漠, 2016, 36(6): 1527-1532.
[8] 马小明, 吕萍. 3种典型地表风沙流通量廓线研究现状[J]. 中国沙漠, 2016, 36(2): 302-306.
[9] 赵国丹, 亢力强, 邹学勇, 张春来, 程宏. 稳态风沙流中沙粒体积浓度的模型分析[J]. 中国沙漠, 2015, 35(5): 1113-1119.
[10] 李超, 董治宝, 崔徐甲. 腾格里沙漠东南缘不同发育阶段横向沙丘粒度特征[J]. 中国沙漠, 2015, 35(1): 129-135.
[11] 刘芳, 郝玉光, 辛智鸣, 陈海玲, 徐军, 赵英铭. 乌兰布和沙漠东北缘地表风沙流结构特征[J]. 中国沙漠, 2014, 34(5): 1200-1207.
[12] 罗生虎, 武建军, 张嘉凡. 碰撞激起沙粒的起跳初速度分布函数[J]. 中国沙漠, 2014, 34(4): 949-954.
[13] 张正偲, 董治宝. 人工卵石床面风沙流粒度特征[J]. 中国沙漠, 2014, 34(3): 639-644.
[14] 王 萍, 郑晓静. 野外近地表风沙流脉动特征分析[J]. 中国沙漠, 2013, 33(6): 1622-1628.
[15] 李兴财1,2,3, 赵 宁1. 风沙静电场对植物茎秆液流传输过程影响的理论分析[J]. 中国沙漠, 2013, 33(6): 1731-1734.