Please wait a minute...
img

官方微信

高级检索
中国沙漠  2020, Vol. 40 Issue (4): 120-127    DOI: 10.7522/j.issn.1000-694X.2019.00089
    
黄河内蒙古段土壤风蚀特征模拟
孙宝洋1,2,3(),周蕊4,王喆5,肖俊波6,马建业3,李朝栋3,马波3()
1.长江水利委员会长江科学院,湖北 武汉 430010
2.水利部山洪地质灾害防治工程技术研究中心,湖北 武汉 430010
3.西北农林科技大学,陕西 杨凌 712100
4.三峡国际能源投资集团有限公司,北京 100038
5.山东省淄博市桓台县水务局,山东 淄博 256400
6.广西壮族自治区水利科学研究院,广西 南宁 530023
The simulation study of wind erosion characteristics of different soils in Inner Mongolia reach of Yellow River
Baoyang Sun1,2,3(),Rui Zhou4,Zhe Wang5,Junbo Xiao6,Jianye Ma3,Chaodong Li3,Bo Ma3()
1.Changjiang River Scientific Research Institute, Changjiang Water Resources Commission, Wuhan 430010 China
2.Engineering Technology Research Center of Mountain Flood Geological Disaster Prevention and Control, Ministry of Water Resources, Wuhan 430010, China
3.Northwest A&F University, Yangling 712100, Shaanxi, China
4.China Three Gorges International Corporation, Beijing 100038, China
5.Huantai county water bureau, Zibo, 256400, Shandong, China
6.Institute of Water Resources Research, Guangxi Zhuang Autonomous Region, Guangxi 530023, China
 全文: PDF(2102 KB)   HTML
摘要:

采集黄河内蒙古段风沙土、灰漠土、棕钙土和灌淤土,在室内进行土壤理化性质测定和风洞模拟试验。对比分析了4种土壤的理化性质和不同风速及含水量条件下的风蚀特征,并量化了不同土壤的风蚀强度与土壤理化性质间关系。结果表明:(1)相对于棕钙土和灌淤土,风沙土和灰漠土易蚀性颗粒含量较大,团聚体、有机质和碳酸钙含量较低,但相同风速和含水量条件下平均风蚀强度风沙土>棕钙土>灰漠土>灌淤土。(2)不同土壤风蚀强度与风速均呈较好的幂函数关系(R2≥0.85,P<0.05),尤其是风沙土和棕钙土,幂函数关系明显优于指数函数。(3)除灰漠土,土壤风蚀强度与土壤含水量均呈较好指数函数关系(R2>0.90,P<0.05),风沙土和灰漠土的风蚀强度突降的含水量临界点在4.5%左右,灌淤土和棕钙土无明显临界点。(4)不同土壤输沙率均随距地表高度的增加而急剧减少。在距地表10 cm范围内,不同土壤输沙率占总输沙率比例风沙土(82.67%)>灰漠土(80.77%)>灌淤土(74.07%)>棕钙土(73.77%),当距地表大于30 cm后,集沙仪中基本收集不到风沙土和灰漠土风蚀颗粒。当轴心风速为16 m·s-1时,不同土壤风沙流结构均表现为单峰曲线。(5)不同土壤风蚀强度与风速、含水量、团聚体、易蚀性颗粒和黏粒含量均呈较强的非线性相关关系(R2=0.76,P<0.05)。易蚀性颗粒含量是影响风蚀强度最主要的土壤属性,其次是干团聚体和黏粒含量。

关键词: 风蚀强度含水量风速风沙流结构    
Abstract:

In order to study the wind erosion characteristics of different textures soil, the aeolian sandy soil and gray desert soil, brown calcium soil and irrigation soil were investigated and collect in the fields. Soil physical properties and wind tunnel simulation were tested in the laboratory. The wind erosion intensity and drifting sand flux of four kinds of soil under the condition of different wind speed and soil moisture content were analyzed. The relationship between wind erosion intensity and soil physical and chemical properties was also quantified. The results showed that: (1) Compared with the brown calcium soil and the irrigated soil, the content of erodibility particles in the aeolian sandy soil and the grey desert soil was larger, and the content of aggregates, organic matter and calcium carbonate was smaller. However, the relationship of average wind erosion intensity under the same wind speed and water content was: the aeolian sandy soil> brown calcium soil > grey desert soil > irrigated soil. (2) Different soil wind erosion intensity and wind speed showed a good power function relationship (R2≥0.85, P< 0.05), especially for aeolian sandy soil and brown calcium soil, the power function relationship was significantly better than the exponential function. (3) In addition to grey desert soil, the average wind erosion intensity of soil showed a good exponential function relationship with the increase of soil water content ((R2 > 0.90, P< 0.05). The critical point of water content of wind erosion intensity of aeolian sandy soil and grey desert soil was about 4.5%, while compared with sandy loam, irrigated soil and brown calcium soil had no obvious critical point. (4) Sediment transport rates of different soils all decrease sharply with the increase of height from the surface. Within a distance of 10 cm from the surface, the size of different soil sediment transport rates in the total sediment transport rate was: aeolian sandy soil (82.67%)> grey desert soil (80.77%) > irrigated soil (74.07%)> brown calcium soil (73.77%). When the distance from the surface was greater than 30 cm, wind-eroded particles are basically not collected in the wind-blown sand soil and grey desert soil sand collector. When the axial wind speed is 16 m/s, the structures of different soil sand-wind flows all show a single peak curve. (5) Different soil wind erosion intensity has a strong non-linear correlation with wind speed, water content, aggregates, erodibility particles and clay content (R2=0.76, P<0.05). The content of erodible particles is the most important soil property, followed by dry aggregates and clay particles.

Key words: wind erosion intensity    soil moisture content    wind velocity    drifting sand flux
收稿日期: 2019-08-04 出版日期: 2020-09-01
ZTFLH:  S157.1  
基金资助: 国家重点研发计划项目(2019YFC1510705-05);长江科学院中央级公益性科研院所基本科研业务费项目(CKSF2019179/TB);国家自然科学基金(41271303)
通讯作者: 马波     E-mail: sdzzsun@sina.com;mabo@126.com
作者简介: 孙宝洋(1991—),男,山东枣庄人,博士,主要从事土壤侵蚀研究。E-mail: sdzzsun@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
孙宝洋
周蕊
王喆
肖俊波
马建业
李朝栋
马波

引用本文:

孙宝洋,周蕊,王喆,肖俊波,马建业,李朝栋,马波. 黄河内蒙古段土壤风蚀特征模拟[J]. 中国沙漠, 2020, 40(4): 120-127.

Baoyang Sun,Rui Zhou,Zhe Wang,Junbo Xiao,Jianye Ma,Chaodong Li,Bo Ma. The simulation study of wind erosion characteristics of different soils in Inner Mongolia reach of Yellow River. Journal of Desert Research, 2020, 40(4): 120-127.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2019.00089        http://www.desert.ac.cn/CN/Y2020/V40/I4/120

图1  黄河中上游内蒙古段土壤类型及采样点位置
试验土样行政区位置地理坐标土壤颗粒含量/%
黏粒(<0.002 mm)粉粒(0.02~0.002 mm)砂粒(2~0.02 mm)
灌淤土巴彦淖尔市40°54′21″N,107°40′47″E18.18±0.5627.68±1.2354.14±1.78
棕钙土磴口县40°13′43″N,107°16′42″E19.17±1.0236.04±1.5644.79±0.49
灰漠土磴口县40°06′17″N,106°49′46″E10.09±0.8910.08±0.9779.83±1.95
风沙土达拉特旗39°58′12″N,110°31′17″E11.14±0.7714.84±1.0374.02±1.54
表1  试验土样地理位置及质地
图2  风洞示意图
图3  风洞试验装置
试验土样风速/(m·s-1)
6810121416
灌淤土3.24±0.064.73±0.245.78±0.157.76±0.049.05±0.11
棕钙土3.23±0.184.38±0.116.32±0.207.65±0.219.26±0.29
灰漠土1.37±0.223.09±0.114.27±0.136.16±0.167.09±0.189.17±0.35
风沙土1.75±0.172.83±0.324.64±0.295.92±0.047.31±0.308.84±0.44
平均1.53.04.56.07.59.0
表2  试验前实测土壤含水量平均值及标准差(%)
试验土样

易蚀性颗粒

(0.4~0.075 mm)/%

有机质

/(g·kg-1)

干团聚体

(>0.4 mm)/%

碳酸钙

/%

风蚀强度

/(g·m-2·h-1)

灌淤土25.39±2.39a8.11±0.75a30.10±1.02a9.45±0.38a240.91±29.8a
棕钙土25.52±3.01a5.15±0.22b23.91±2.57b11.23±1.05b453.74±42.5b
灰漠土52.60±4.38b2.83±0.31c19.57±4.10c7.15±0.89c369.24±84.2c
风沙土61.21±2.17c3.26±0.18c14.05±2.41d6.30±0.51c706.96±156.7d
表3  试验土壤风蚀强度及物理性质
自变量土壤类型幂函数拟合指数函数拟合
函数式拟合优度(R2函数式拟合优度(R2
风速风沙土y = 0.0005x5.660.85y = 0.92e0.52x0.76
棕钙土y = 0.0000005x8.120.93y = 0.02e0.75x0.85
灰漠土y = 0.0034x4.520.97y = 2.25e0.38x0.95
灌淤土y = 0.0002x5.470.96y = 0.46e0.47x0.96
含水量风沙土y = 13247x-3.180.85y = 27569e-1.20x0.92
棕钙土y = 2475.1x-1.750.86y = 1481.5e-0.26x0.92
灰漠土y = 1746.4x-0.930.90y = 2746e-0.57x0.75
灌淤土y = 1292.2x-1.220.94y = 1014.7e-0.34x0.94
表4  土壤风蚀强度与风速和含水量的函数拟合
图4  平均风蚀强度与风速关系
图5  不同含水量土壤风蚀强度
图6  输沙率随高度变化特征
图7  风速为16 m·s-1时的风沙流结构
项目黏粒/%粉粒/%砂粒/%有机质/(g·kg-1碳酸钙/%干团聚体/%易蚀性颗粒/%风速/(m·s-1含水量/%输沙率/(g·cm-1·min-1
风蚀强度/(g·m-2·h-1-0.19*-0.150.17-0.18-0.06-0.27**0.25**0.38**-0.49**0.45**
表5  风蚀强度与土壤理化性质、风速和输沙率相关关系
1 Tan M,Li X,Xin L.Intensity of dust storms in China from 1980 to 2007:A new definition[J].Atmospheric Environment,2014,85(85):215-222.
2 孙宝洋,李占斌,张洋,等.黄河内蒙古支流“十大孔兑”区风蚀强度时空变化特征[J].农业工程学报,2016,32(17):112-119.
3 Du H Q,Xue X,Wang T,et al.Assessment of wind-erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River,northern China[J].Aeolian Research,2015,17:193-204.
4 杜鹤强,薛娴,王涛,等.1986-2013年黄河宁蒙河段风蚀模数与风沙入河量估算[J].农业工程学报,2015,31(10):142-151.
5 杜鹤强,薛娴,王涛.黄河上游宁夏-内蒙古段跃移沙粒起动风速的空间分布[J].农业工程学报,2013,29(14):210-219.
6 和继军,唐泽军,蔡强国,等.内蒙古农牧交错区农耕地土壤风蚀规律的风洞试验研究[J].水土保持学报,2010,24(4):35-39.
7 董治宝,陈渭南,李振山,等.风沙土水分抗风蚀性研究[J].水土保持通报,1996,2:17-23.
8 南岭,杜灵通,展秀丽.土壤风蚀可蚀性研究进展[J].土壤,2014,46(2):204-211.
9 Chepil W S.Field structure of cultivated soils with special reference to erodibility by wind[J].Soil Science Society of America Journal,1953,17(3):185-190.
10 董治宝,李振山.风成沙粒度特征对其风蚀可蚀性的影响[J].土壤侵蚀与水土保持学报,1998,4:2-6.
11 董治宝,钱广强.关于土壤水分对风蚀起动风速影响研究的现状与问题[J].土壤学报,2007,44(5):934-942.
12 Ravi S,Zobeck T M,Over T M,et al.On the effect of moisture bonding forces in air-dry soils on threshold friction velocity of wind erosion[J].Sedimentology,2006,53(3):597-609.
13 赵沛义,妥德宝,李焕春,等.土壤含水量及物理性砂粒含量对风蚀模数影响的风洞模拟[J].农业工程学报,2012,28(24):188-195.
14 王仁德,李庆,常春平,等.新型平口式集沙仪对不同粒级颗粒的收集效率[J].中国沙漠,2018,38(4):734-738.
15 唐青,陈立平,张瑞瑞,等.IEA-Ⅰ型航空植保高速风洞的设计与校测[J].农业工程学报,2016,32(6):73-81.
16 Li X Y,Liu L Y,Wang J H.Wind tunnel simulation of aeolian sandy soil erodibility under human disturbance[J].Geomorphology,2004,59(1):3-11.
17 李锐,赵牡丹,杨勤科.中国土壤侵蚀地图集[Z].北京:中国地图出版社,2014.
18 张庆印,樊军,张晓萍.水蚀对风蚀影响的室内模拟试验[J].水土保持学报,2012,26(2):75-79.
19 吴晓旭,邹学勇,王仁德,等.毛乌素沙地不同下垫面的风沙运动特征[J].中国沙漠,2011,31(4):828-835.
20 王升堂,赵延治,邹学勇,等.北京郊区不同土地利用类型起沙起尘的特征研究[J].地理科学,2005,25(5):91-95.
21 Smalley I J.Cohesion of soil particles and the intrinsic resistance of simple soil systems to wind erosion[J].Journal of Soil Science,1970,21(1):154-161.
22 何文清,赵彩霞,高旺盛,等.不同土地利用方式下土壤风蚀主要影响因子研究:以内蒙古武川县为例[J].应用生态学报,2005,16(11):88-92.
23 Pye K,Tsoar H.Aeolian Sand and Desert Dune[M].London,UK:Unwin Hyman,1990.
24 陈智,麻硕士,赵永来,等.保护性耕作农田地表风沙流特性[J].农业工程学报,2010,26(1):118-122.
25 杨欢,李玉强,王旭洋,等.半干旱区不同类型沙丘风沙流结构特征[J].中国沙漠,2018,38(6):1144-1152.
[1] 胡菲,张克存,安志山,鱼燕萍. 敦煌沙漠、绿洲和戈壁地表风动力环境特征同步对比[J]. 中国沙漠, 2020, 40(4): 113-119.
[2] 张克海, 胡广录, 方桥, 张钰佳, 李浩然. 黑河中游荒漠绿洲过渡带固沙植被根区土壤含水量[J]. 中国沙漠, 2020, 40(3): 33-42.
[3] 亢力强, 杨智成, 张军杰, 邹学勇, 张文. 两种柔性植株地表风速廓线特征比较的风洞模拟[J]. 中国沙漠, 2020, 40(2): 43-49.
[4] 闫德仁, 袁立敏, 黄海广, 胡小龙, 杨制国. 直压立式纱网沙障对近地表输沙量及风速的影响[J]. 中国沙漠, 2020, 40(2): 79-85.
[5] 包岩峰, 王学全, 姚斌, 郝玉光, 刘芳, 辛智鸣, 李永华. 小网窄带防护林叠加防风效果风洞实验[J]. 中国沙漠, 2020, 40(2): 185-194.
[6] 鱼燕萍, 张克存, 安志山, 张余. 敦煌-格尔木铁路沿线风动力环境特征[J]. 中国沙漠, 2020, 40(1): 41-48.
[7] 王国鹏, 肖波, 李胜龙, 姚小萌, 孙福海. 生物土壤结皮对风沙土和黄绵土膨胀特性的影响[J]. 中国沙漠, 2020, 40(1): 97-104.
[8] 李敏岚, 屈建军, 唐希明, 顿耀权, 陈晓莹, 吴婷, 宋乃平. 高密度聚乙烯(HDPE)蜂巢式沙障对土壤水分的影响[J]. 中国沙漠, 2020, 40(1): 136-144.
[9] 刘旭阳, 宁文晓, 王振亭. 新月形沙丘脊线处的风沙流结构[J]. 中国沙漠, 2019, 39(6): 76-82.
[10] 丁延龙, 汪季, 胡生荣, 高永, 孙晓瑞, 刘斌, 杨黎明, 沈桂露. 吉兰泰盐湖风沙防护林体系建立35 a以来防沙效益评估[J]. 中国沙漠, 2019, 39(5): 111-119.
[11] 杨彩红, 冯福学, 柴强, 耿艳香, 伏星舟. 小麦玉米田耕作模式的防风蚀效果[J]. 中国沙漠, 2019, 39(4): 9-15.
[12] 李宽, 贾晓鹏, 熊鑫, 王海兵, 李钢铁. 额济纳旗典型地表沙尘释放潜力及沙尘天气频发成因[J]. 中国沙漠, 2019, 39(3): 191-198.
[13] 马明杰, 杨兴华, 何清, 买买提艾力·买买提依明, 周成龙, 霍文. 塔克拉玛干荒漠-绿洲过渡带尘卷风活动特征——以肖塘为例[J]. 中国沙漠, 2019, 39(2): 115-121.
[14] 鱼燕萍, 肖建华, 屈建军, 李芳, 李万强, 潘多明, 吴青瑞, 洪雪峰, 田永祯. 两种典型高等级公路路基断面风沙过程的风洞模拟[J]. 中国沙漠, 2019, 39(1): 68-79.
[15] 孟阳阳, 刘冰, 刘婵. 荒漠绿洲湿地土壤水热盐动态过程及其影响机制[J]. 中国沙漠, 2019, 39(1): 149-160.