中国沙漠 ›› 2023, Vol. 43 ›› Issue (1): 116-127.DOI: 10.7522/j.issn.1000-694X.2022.00091
• • 上一篇
翟军团(), 陈向向, 李秀, 张山河, 韩晓莉, 李志军(
)
收稿日期:
2022-04-14
修回日期:
2022-05-31
出版日期:
2023-01-20
发布日期:
2023-01-17
通讯作者:
李志军
作者简介:
李志军(E-mail: lizhijun0202@126.com)基金资助:
Juntuan Zhai(), Xiangxiang Chen, Xiu Li, Shanhe Zhang, Xiaoli Han, Zhijun Li(
)
Received:
2022-04-14
Revised:
2022-05-31
Online:
2023-01-20
Published:
2023-01-17
Contact:
Zhijun Li
摘要:
胡杨(Populus euphratica)具有异形叶性,在维持干旱荒漠区生态平衡中发挥着不可代替的作用。研究枝、叶形态和生物量间的关系,探讨胡杨资源分配的策略具有重要意义。通过测定不同径阶胡杨雌雄株当年生枝、叶形态性状及生物量,研究在不同发育阶段和不同冠层高度下胡杨雌雄株枝、叶间的生长关系。结果表明:随径阶的增加,雌雄株叶片数呈减小趋势,枝条粗、叶柄长、叶柄粗、叶面积、叶片数、枝干重和每枝叶干重呈增加趋势;不同径阶胡杨雌雄株枝、叶形态间存在异速生长关系,随着径阶的变化,雄株枝叶形态转变较快,而雌株枝叶间的生物量转化效率更高;不同冠层高度胡杨雌雄株枝、叶形态间存在异速生长关系,随着冠层高度的变化,雌株枝叶形态转变较快,而雄株生物量转化效率更高。胡杨在高的冠层和成熟的发育阶段可能通过更短更粗的当年生枝条高效地为具有较大叶柄长、叶柄粗、叶面积的叶片提供水分和矿物质元素。
中图分类号:
翟军团, 陈向向, 李秀, 张山河, 韩晓莉, 李志军. 胡杨( Populus euphratica )枝叶异速生长关系随发育阶段及冠层高度变化的性别差异[J]. 中国沙漠, 2023, 43(1): 116-127.
Juntuan Zhai, Xiangxiang Chen, Xiu Li, Shanhe Zhang, Xiaoli Han, Zhijun Li. Sexual dimorphism in allometric growth relationship between branch and leaf traits of Populus euphratica with changes in developmental stage and canopy height[J]. Journal of Desert Research, 2023, 43(1): 116-127.
性别 | 径阶 | 平均胸径/cm | 平均树高/m | 平均树龄/a |
---|---|---|---|---|
雌株 | 8 cm | 8.33 | 7.53 | 8.10 |
12 cm | 14.30 | 9.47 | 9.30 | |
16 cm | 17.67 | 11.27 | 10.37 | |
20 cm | 23.23 | 12.87 | 11.17 | |
雄株 | 8 cm | 9.33 | 7.97 | 8.37 |
12 cm | 14.37 | 10.00 | 9.70 | |
16 cm | 17.33 | 10.93 | 10.13 | |
20 cm | 24.83 | 12.70 | 11.10 |
表1 胡杨雌雄株样本的基本信息
Table 1 Basic information of female and male samples of Populus euphratica
性别 | 径阶 | 平均胸径/cm | 平均树高/m | 平均树龄/a |
---|---|---|---|---|
雌株 | 8 cm | 8.33 | 7.53 | 8.10 |
12 cm | 14.30 | 9.47 | 9.30 | |
16 cm | 17.67 | 11.27 | 10.37 | |
20 cm | 23.23 | 12.87 | 11.17 | |
雄株 | 8 cm | 9.33 | 7.97 | 8.37 |
12 cm | 14.37 | 10.00 | 9.70 | |
16 cm | 17.33 | 10.93 | 10.13 | |
20 cm | 24.83 | 12.70 | 11.10 |
14.51±4.66A | 11.68±3.66B | 10.50±4.19B | 8.24±2.66C | 8.24±2.66C | 12.36±4.06B | 8.58±4.17C | 6.98±1.23D | ||
2.23±0.33B | 2.22±0.30B | 1.97±0.31C | 2.56±0.30A | 2.55±0.45B | 2.44±0.36B | 2.52±0.43B | 2.73±0.30A | ||
3.24±0.72C | 3.74±0.71B | 2.88±0.54D | 4.19±0.51A | 3.45±0.84C | 4.13±0.58AB | 3.96±0.72B | 4.26±0.48A | ||
0.85±0.09C | 0.95±0.09B | 0.85±0.12C | 1.13±0.11A | 0.98±0.22B | 1.01±0.17B | 0.96±0.13B | 1.16±0.11A | ||
13.16±2.82C | 14.48±2.75B | 9.93±1.93D | 17.44±2.77A | 13.88±4.28B | 13.58±1.65B | 13.58±2.82B | 17.79±2.60A | ||
6.99±0.95A | 7.22±0.71A | 6.38±1.04B | 5.57±0.78C | 7.44±1.14A | 7.18±0.91A | 7.34±0.97A | 6.50±0.77B | ||
0.19±0.12A | 0.17±0.08A | 0.11±0.05B | 0.16±0.05A | 0.27±0.23A | 0.19±0.07B | 0.21±0.10B | 0.21±0.06B | ||
0.14±0.05C | 0.18±0.05B | 0.14±0.09C | 0.25±0.06A | 0.14±0.06C | 0.18±0.05B | 0.17±0.06B | 0.23±0.05A |
表2 枝、叶性状及生物量在不同冠层高度间的差异
Table 2 Differences in branch, leaf traits and biomass among different canopy layers
14.51±4.66A | 11.68±3.66B | 10.50±4.19B | 8.24±2.66C | 8.24±2.66C | 12.36±4.06B | 8.58±4.17C | 6.98±1.23D | ||
2.23±0.33B | 2.22±0.30B | 1.97±0.31C | 2.56±0.30A | 2.55±0.45B | 2.44±0.36B | 2.52±0.43B | 2.73±0.30A | ||
3.24±0.72C | 3.74±0.71B | 2.88±0.54D | 4.19±0.51A | 3.45±0.84C | 4.13±0.58AB | 3.96±0.72B | 4.26±0.48A | ||
0.85±0.09C | 0.95±0.09B | 0.85±0.12C | 1.13±0.11A | 0.98±0.22B | 1.01±0.17B | 0.96±0.13B | 1.16±0.11A | ||
13.16±2.82C | 14.48±2.75B | 9.93±1.93D | 17.44±2.77A | 13.88±4.28B | 13.58±1.65B | 13.58±2.82B | 17.79±2.60A | ||
6.99±0.95A | 7.22±0.71A | 6.38±1.04B | 5.57±0.78C | 7.44±1.14A | 7.18±0.91A | 7.34±0.97A | 6.50±0.77B | ||
0.19±0.12A | 0.17±0.08A | 0.11±0.05B | 0.16±0.05A | 0.27±0.23A | 0.19±0.07B | 0.21±0.10B | 0.21±0.06B | ||
0.14±0.05C | 0.18±0.05B | 0.14±0.09C | 0.25±0.06A | 0.14±0.06C | 0.18±0.05B | 0.17±0.06B | 0.23±0.05A |
图1 不同发育阶段枝长与叶性状的生长关系S为对应径阶斜率,括号内为95%置信区间;P为对应共同斜率的异质性;Cs代表共同斜率;F,雌株;M,雄株
Fig.1 Growth relationship between branch length with leaf traits at different developmental stages
图2 不同发育阶段枝粗与叶性状的生长关系S为对应径阶斜率,括号内为95%置信区间;P为对应共同斜率的异质性;Cs代表共同斜率;F,雌株;M,雄株
Fig.2 Growth relationship between branch thickness with leaf traits at different developmental stages
图3 不同发育阶段枝、叶干重间的生长关系S为对应径阶斜率,括号内为95%置信区间;P为对应共同斜率的异质性;Cs代表共同斜率;F,雌株;M,雄株
Fig.3 Growth relationship of shoot and leaf biomass at different developmental stages
图5 不同径阶雌雄株枝干重与叶性状间的异速生长关系S为对应径阶斜率,括号内为95%置信区间;P为对应共同斜率的异质性;Cs代表共同斜率;F,雌株;M,雄株
Fig.5 Growth relationship between shoot biomass and leaf traits at different developmental stages
1 | 李亚男,杨冬梅,孙书存,等.杜鹃花属植物小枝大小对小枝生物量分配及叶面积支持效率的影响:异速生长分析[J].植物生态学报,2008,32(5):1175-1183. |
2 | 史元春,赵成章,宋清华,等.兰州北山刺槐枝叶性状的坡向差异性[J].植物生态学报,2015,39(4):362-370. |
3 | 肖遥,陶冶,张元明.古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征[J].植物生态学报,2014,38(9):929-940. |
4 | Alméras T, Costes E, Salles J C.Identification of biomechanical actors involved in stem shape variability between pricot tree varieties[J].Annals of Botany,2004,93:55-468. |
5 | Parkhurst D F, Loucks O L.Optimal leaf size in relation to environment[J].Journal of Ecology,1972,60:505-537. |
6 | Givnish T J, Vermeij G J.Sizes and shapes of liane leaves[J].The American Naturalist,1976,110:743-778. |
7 | Brouat C, Gibernau M, Amsellem L,et al.Corners rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry[J].New Phytologist,1998,139:459-470. |
8 | Violle C, Navas M L, Vile D,et al.Let the concept of trait be functional![J].Oikos,2007,116:882-892. |
9 | Sun S C, Jin D M, Shi P L.The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship[J].Annals of Botany,2006,97:97-107. |
10 | 张艳茹,陈红,王海洋.低海拔常绿杜鹃小枝繁殖分配与异速生长关系研究[J].西南大学学报(自然科学版),2016,38(3):77-82. |
11 | 孙俊,王满堂,程林,等.不同海拔典型竹种枝叶大小异速生长关系[J].生态学杂志,2019,30(1):165-172. |
12 | 陈国鹏,杨克彤,王立,等.甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J].植物生态学报,2020,44(10):1040-1049. |
13 | Maiti R, Rodriguez H G, Sarkar N C,et al.Branching pattern and leaf crown architecture of some tree and shrubs in northeast Mexico[J].International Journal of Bio-resource and Stress Management,2015,6:41-50. |
14 | Cai H Y, Di X Y, Jin G Z.Allometric models for leaf area and leaf mass predictions across different growing seasons of elm tree (Ulmus japonica) [J].Journal of Forestry Research,2017,28:975-982. |
15 | 李曼,郑媛,郭英荣,等.武夷山不同海拔黄山松枝叶大小关系[J].生态学杂志,2017,28(2):537-544. |
16 | 姚婧,李颖,魏丽萍,等.东灵山不同林型五角枫叶性状异速生长关系随发育阶段的变化[J].生态学报,2013,33(13):3907-3915. |
17 | 赵园园,王海洋.重庆常见园林树木异速生长关系随发育的变化[J].西南大学学报(自然科学版),2021,43(5):46-55. |
18 | 耿梦娅,陈芳清,吕坤,等.长柄双花木叶性状异速生长关系随发育阶段和海拔梯度的变化[J].广西植物,2019,39(10):1387-1397. |
19 | 杜晶,赵成章,宋清华,等.祁连山北坡霸王枝-叶性状关系的个体大小差异[J].植物生态学报,2016,40(3):212-220. |
20 | Urbas P, Zobel K.Adaptive and inevitable morphological plasticity of three herbaceous species in a multi-species community: field experiment with manipulated nutrients and light[J].Acta Oecologica,2000,21:139-147. |
21 | Poorter L.Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests[J].New Phytologist,2009,181:890-900. |
22 | 史青茹,许洺山,赵延涛,等.浙江天童木本植物Corner法则的检验: 微地形的影响[J].植物生态学报,2014,38(7):665-674. |
23 | Weiner J.Allocation,plasticity and allometry in plants[J].Perspectives in Plant Ecology,Evolution and Systematics,2004,6:207-215. |
24 | Enquist B J, Niklas K J.Global allocation rules for patterns of biomass partitioning in seed plants[J].Science,2002,295: 1517-1520. |
25 | Weller D E.The interspecific size-density relationship among crowded plant stands and its implications for the -3/2 power rule of self-thinning[J].The American Naturalist,1989,133:20-41. |
26 | Milla R, Reich P B.The scaling of leaf area and mass: the cost of light interception increases with leaf size[J].Proceedings of the Royal Society B,2007,274:2109-2114. |
27 | Niklas K J, Cobb E D, Niinemets U,et al.“Diminishing returns” in the scaling of functional leaf traits across and within species groups[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104:8891-8896. |
28 | 李志军,焦培培,郑亚琼,等.胡杨和灰杨繁殖生物学[M].北京:科学出版社,2019:9-12. |
29 | 李志军,李娜,鲁天平,等.新疆胡杨林[M].北京:中国林业出版社,2020:37-45. |
30 | 李志军,焦培培,吴智华,等.胡杨和灰杨的异形叶性及生长适应策略[M].北京:科学出版社,2021:16-81. |
31 | Zhai J T, Li Y L, Han Z J,et al.Morphological,structural and physiological differences in heteromorphic leaves of Euphrates poplar during development stages and at crown scales[J].Plant Biology,2020,22(3):366-375. |
32 | 孟欢欢,张媛媛,周晓兵,等.古尔班通古特沙漠草本植物生物量分配特征[J].中国沙漠,2022,42(1):96-107. |
33 | Midgley J and Bond W.Leaf size and inflorescence size may be allometrically related traits[J].Oecologia,1989,78:427-429. |
34 | Li G, Yang D, Sun S.Allometric relationships between lamina area,lamina mass and petiole mass of 93 temperate woody species vary with leaf habit,leaf form and altitude[J].Functional Ecology,2008,22:557-564. |
35 | Takenaka A.Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot[J].Ecological Research,1994,9:109-114. |
36 | 祝介东,孟婷婷,倪健,等.不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异[J].植物生态学报,2011,35(7):687-698. |
37 | 冯梅,黄文娟,李志军.胡杨叶形变化与叶片养分间的关系[J].生态学杂志,2014(6):1467-1473. |
38 | 赵鹏宇,冯梅,焦培培,等.胡杨不同发育阶段叶片形态解剖学特征及其与胸径的关系[J].干旱区研究,2016,33(5):1071-1080. |
39 | Corner E.The durian theory or the origin of the modern tree[J].Annals of Botany,1949,13:367-414. |
40 | Westoby M, Wright I J.The leaf size-twig size spectrum and its relationship to other important spectra of variation among species[J].Oecologia,2003,135(4):621-628. |
41 | Brites D, Valladares F.Implications of opposite phyllotaxis for light interception efficiency of Mediterranean woody plants[J].Trees,2005,19: 671-679. |
42 | White P S.Corner's rules in eastern deciduous trees: allometry and its implications for the adaptive architecture of trees[J].Bulletin of the Torrey Botanical Club,1983,110:203-212. |
43 | White P S.Evidence that temperate east North American evergreen woody plants follow Corner's rules[J].New Phytologist,1983,95:139-145. |
44 | Westoby M, Falster D S, Moles A T,et al.Plant ecological strategies: some leading dimensions of variation between species[J].Annual Review of Ecology and Systematics,2002,33:125-159. |
45 | 刘志国,蔡永立,李恺.亚热带常绿阔叶林植物叶小枝的异速生长[J].植物生态学报,2008,32(2):363-369. |
46 | West G B, Brown J H, Enquist B J.A general model for the origin of allometric scaling laws in biology[J].Science,1997,276:122-126. |
[1] | 张琦, 苏永红, 冯起, 鱼腾飞, 马小红. 以地下水位估算的荒漠河岸胡杨( Populus euphratica )林生态系统地下水蒸散发[J]. 中国沙漠, 2022, 42(6): 243-254. |
[2] | 李小乐, 党晓宏, 翟波, 魏亚娟, 迟旭, 吴惠敏. 白刺( Nitraria tangutorum )灌丛不定根构型特征及生物量分配模式[J]. 中国沙漠, 2022, 42(4): 172-180. |
[3] | 王怀海, 黄文达, 何远政, 牛亚毅, 朱远忠. 短期增温和降水减少对沙质草地土壤微生物量碳氮和酶活性的影响[J]. 中国沙漠, 2022, 42(3): 274-281. |
[4] | 郭新新, 岳平, 李香云, 乔静娟, 胡亚, 左小安. 降水量对荒漠草原骆驼蓬( Peganum harmala )地上生物量的影响[J]. 中国沙漠, 2022, 42(2): 164-172. |
[5] | 卢建男, 刘凯军, 王瑞雄, 李彦杰, 宁志英, 陈雪萍, 赵思腾, 王少昆, 赵学勇. 中国荒漠植物-土壤系统生态化学计量学研究进展[J]. 中国沙漠, 2022, 42(2): 173-182. |
[6] | 于钊, 李奇铮, 王培源, 蒋齐. 退化和恢复过程驱动的荒漠草地生态系统有机碳密度变化[J]. 中国沙漠, 2022, 42(2): 215-222. |
[7] | 孙迎涛, 岳艳鹏, 成龙, 庞营军, 赵河聚, 费兵强, 修晓敏, 吴波, 赵雨兴, 石麟, 何金军, 贾晓红. 毛乌素沙地油蒿(Artemisia ordosica)生长及生物量分配对沙漠化的响应[J]. 中国沙漠, 2022, 42(1): 123-133. |
[8] | 孟欢欢, 张媛媛, 周晓兵, 尹本丰, 周多奇, 陶冶. 古尔班通古特沙漠草本植物生物量分配特征[J]. 中国沙漠, 2022, 42(1): 96-107. |
[9] | 杨航宇, 刘艳梅, 罗广元, 刘凤莲. 荒漠区食细菌线虫对生物土壤结皮下土壤微生物量的影响[J]. 中国沙漠, 2021, 41(6): 120-125. |
[10] | 何莹莹, 于明含, 丁国栋, 高广磊, 刘伟, 周子渊. 油蒿(Artemisia ordosica)幼苗生长及生物量分配对降雨量和降雨间隔的响应[J]. 中国沙漠, 2021, 41(5): 183-191. |
[11] | 雷军, 杨逍虎, 刘红梅, 赵玉红, 范菊萍, 郭彩霞. 黑河流域中游荒漠典型区域植被生物量及其影响因素[J]. 中国沙漠, 2021, 41(1): 203-208. |
[12] | 詹瑾, 李玉霖, 韩丹, 杨红玲. 半干旱沙区3种优势固沙灌木生物量分配及其生态学意义[J]. 中国沙漠, 2020, 40(5): 149-157. |
[13] | 岳艳鹏, 孙迎涛, 庞营军, 成龙, 周虹, 贾晓红, 赵雨兴, 赵河聚, 吴波. 毛乌素沙地沙丘活化过程中油蒿(Artemisia ordosica)根系特征[J]. 中国沙漠, 2020, 40(3): 177-184. |
[14] | 李端, 司建华, 张小由, 高雅玉, 罗欢, 秦洁, 任立新. 胡杨(Populus euphratica)对干旱胁迫的生态适应[J]. 中国沙漠, 2020, 40(2): 17-23. |
[15] | 马晓俊, 李云飞. 腾格里沙漠东南缘植被恢复过程中土壤微生物量及酶活性[J]. 中国沙漠, 2019, 39(6): 159-166. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn