Journal of Desert Research ›› 2023, Vol. 43 ›› Issue (3): 69-85.DOI: 10.7522/j.issn.1000-694X.2022.00136
Previous Articles Next Articles
Ying Wang(), Shuangwen Yi(
), Zhiwei Xu, Haochen Zhang, Xusheng Li
Received:
2022-08-31
Revised:
2022-11-10
Online:
2023-05-20
Published:
2023-05-31
Contact:
Shuangwen Yi
CLC Number:
Ying Wang, Shuangwen Yi, Zhiwei Xu, Haochen Zhang, Xusheng Li. Quartz OSL and K-feldspar pIRIR dating of typical sediments over the past 20 000 years from the Tengger Desert, northern China[J]. Journal of Desert Research, 2023, 43(3): 69-85.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2022.00136
步骤 | 石英 SAR -OSL | 钾长石pIRIR150 | ||
---|---|---|---|---|
测试环节 | 观测值 | 测试环节 | 观测值 | |
1 | 附加再生剂量Di* | — | 附加再生剂量Di* | — |
2 | 预热(Preheat,200 ℃,10 s) | — | 预热(Preheat,180 ℃,60 s) | — |
3 | 蓝光激发(125 ℃,40 s) | LX | 红外激发(50 ℃,100 s) | LX50 |
4 | 实验剂量Dt | — | 红外激发(150 ℃,100 s) | LX150 |
5 | 热释光(Cutheat,160 ℃) | — | 实验剂量Dt | — |
6 | 蓝光激发(125 ℃,40 s) | TX | 热释光(Cutheat,180 ℃,60 s) | — |
7 | 返回第一步 | — | 红外激发(50 ℃,100 s) | TX50 |
8 | — | 红外激发(150 ℃,100 s) | TX150 | |
9 | — | 返回第一步 | — |
Table 1 The dating protocols used to measure De values
步骤 | 石英 SAR -OSL | 钾长石pIRIR150 | ||
---|---|---|---|---|
测试环节 | 观测值 | 测试环节 | 观测值 | |
1 | 附加再生剂量Di* | — | 附加再生剂量Di* | — |
2 | 预热(Preheat,200 ℃,10 s) | — | 预热(Preheat,180 ℃,60 s) | — |
3 | 蓝光激发(125 ℃,40 s) | LX | 红外激发(50 ℃,100 s) | LX50 |
4 | 实验剂量Dt | — | 红外激发(150 ℃,100 s) | LX150 |
5 | 热释光(Cutheat,160 ℃) | — | 实验剂量Dt | — |
6 | 蓝光激发(125 ℃,40 s) | TX | 热释光(Cutheat,180 ℃,60 s) | — |
7 | 返回第一步 | — | 红外激发(50 ℃,100 s) | TX50 |
8 | — | 红外激发(150 ℃,100 s) | TX150 | |
9 | — | 返回第一步 | — |
实验编号 | 样品名称 | 深度 /m | 地层 类型 | U含量 /(mg·kg-1) | Th含量 /(mg·kg-1) | K含量 /% | 石英剂量率 /(Gy·ka-1) | 钾长石剂量率/(Gy·ka-1) |
---|---|---|---|---|---|---|---|---|
NJU2395 | N01A-S-380cm | 3.8 | 风沙层 | 0.53±0.04 | 2.22±0.10 | 2.31±0.07 | 2.58±0.08 | 3.10±0.13 |
NJU2396 | N01B-15cm | 0.15 | 湖相层 | 1.30±0.06 | 5.31±0.18 | 1.98±0.06 | 2.65±0.11 | 3.25±0.17 |
NJU2397 | N01B-60cm | 0.6 | 湖相层 | 1.01±0.05 | 4.08±0.15 | 1.63±0.05 | 2.15±0.09 | 2.74±0.15 |
NJU2398 | N01B-180cm | 1.8 | 风沙层 | 0.71±0.04 | 2.45±0.10 | 2.10±0.06 | 2.48±0.08 | 3.02±0.13 |
NJU2399 | N01B-300cm | 3.0 | 风沙层 | 1.04±0.05 | 3.43±0.13 | 2.04±0.06 | 2.53±0.08 | 3.13±0.14 |
NJU2400 | N01B-420cm | 4.2 | 风沙层 | 0.68±0.05 | 2.06±0.09 | 2.19±0.07 | 2.48±0.08 | 3.02±0.13 |
NJU2401* | N01B-500cm | 5.0 | 风沙层 | 0.85±0.05 | 2.45±0.10 | 2.19±0.07 | 2.33±0.10 | 2.87±0.15 |
NJU3665 | XJZ-10cm | 0.1 | 湖相层 | 1.68±0.08 | 7.55±0.38 | 1.86±0.09 | 2.82±0.13 | 3.43±0.18 |
NJU3666 | NHN-70cm | 0.7 | 次生黄土 | 2.23±0.11 | 10.77±0.54 | 1.98±0.10 | 3.16±0.14 | 4.05±0.22 |
NJU4011 | YWQ1-20cm | 0.2 | 湖相层 | 1.15±0.06 | 5.52±0.28 | 1.88±0.09 | 2.55±0.12 | 3.17±0.17 |
NJU4012 | YWQ1-50cm | 0.5 | 湖相层 | 1.14±0.06 | 5.73±0.29 | 1.85±0.09 | 2.49±0.12 | 3.14±0.17 |
NJU4013 | YWQ2-20cm | 0.2 | 古土壤 | 2.22±0.11 | 7.64±0.38 | 1.90±0.10 | 2.93±0.13 | 3.66±0.20 |
NJU4014 | YWQ2-75cm | 0.75 | 风沙层 | 1.22±0.06 | 5.89±0.29 | 1.81±0.09 | 2.59±0.09 | 3.26±0.15 |
Table 2 The environmental radioactivity and dose rates for the samples
实验编号 | 样品名称 | 深度 /m | 地层 类型 | U含量 /(mg·kg-1) | Th含量 /(mg·kg-1) | K含量 /% | 石英剂量率 /(Gy·ka-1) | 钾长石剂量率/(Gy·ka-1) |
---|---|---|---|---|---|---|---|---|
NJU2395 | N01A-S-380cm | 3.8 | 风沙层 | 0.53±0.04 | 2.22±0.10 | 2.31±0.07 | 2.58±0.08 | 3.10±0.13 |
NJU2396 | N01B-15cm | 0.15 | 湖相层 | 1.30±0.06 | 5.31±0.18 | 1.98±0.06 | 2.65±0.11 | 3.25±0.17 |
NJU2397 | N01B-60cm | 0.6 | 湖相层 | 1.01±0.05 | 4.08±0.15 | 1.63±0.05 | 2.15±0.09 | 2.74±0.15 |
NJU2398 | N01B-180cm | 1.8 | 风沙层 | 0.71±0.04 | 2.45±0.10 | 2.10±0.06 | 2.48±0.08 | 3.02±0.13 |
NJU2399 | N01B-300cm | 3.0 | 风沙层 | 1.04±0.05 | 3.43±0.13 | 2.04±0.06 | 2.53±0.08 | 3.13±0.14 |
NJU2400 | N01B-420cm | 4.2 | 风沙层 | 0.68±0.05 | 2.06±0.09 | 2.19±0.07 | 2.48±0.08 | 3.02±0.13 |
NJU2401* | N01B-500cm | 5.0 | 风沙层 | 0.85±0.05 | 2.45±0.10 | 2.19±0.07 | 2.33±0.10 | 2.87±0.15 |
NJU3665 | XJZ-10cm | 0.1 | 湖相层 | 1.68±0.08 | 7.55±0.38 | 1.86±0.09 | 2.82±0.13 | 3.43±0.18 |
NJU3666 | NHN-70cm | 0.7 | 次生黄土 | 2.23±0.11 | 10.77±0.54 | 1.98±0.10 | 3.16±0.14 | 4.05±0.22 |
NJU4011 | YWQ1-20cm | 0.2 | 湖相层 | 1.15±0.06 | 5.52±0.28 | 1.88±0.09 | 2.55±0.12 | 3.17±0.17 |
NJU4012 | YWQ1-50cm | 0.5 | 湖相层 | 1.14±0.06 | 5.73±0.29 | 1.85±0.09 | 2.49±0.12 | 3.14±0.17 |
NJU4013 | YWQ2-20cm | 0.2 | 古土壤 | 2.22±0.11 | 7.64±0.38 | 1.90±0.10 | 2.93±0.13 | 3.66±0.20 |
NJU4014 | YWQ2-75cm | 0.75 | 风沙层 | 1.22±0.06 | 5.89±0.29 | 1.81±0.09 | 2.59±0.09 | 3.26±0.15 |
实验 编号 | 样品 名称 | 深度 /m | 石英OSL 等效剂量 /Gy | 钾长石pIRIR150 等效剂量 /Gy | 测片数 (A/B)* | 石英OSL 年代 /ka | 钾长石pIRIR150 未校正年代 /ka | g-值 /(%/10a)** | 钾长石pIRIR150 校正年代 /ka |
---|---|---|---|---|---|---|---|---|---|
NJU2395 | N01A-S-380cm | 3.8 | 26.47±1.47 | 31.47±1.95 | 21/10 | 10.27±0.65 | 10.14±0.77 | — | 12.56±1.59 |
NJU2396 | N01B-15cm | 0.15 | 20.75±0.45 | 24.75±0.43 | 24/15 | 7.83±0.37 | 7.62±0.41 | 2.27±0.89 | 9.41±1.07 |
NJU2397 | N01B-60cm | 0.6 | 25.80±0.47 | 32.79±0.45 | 20/14 | 12.02±0.56 | 11.97±0.67 | — | 14.86±1.67 |
NJU2398 | N01B-180cm | 1.8 | 39.99±1.03 | 45.08±0.88 | 19/14 | 16.14±0.65 | 14.91±0.72 | — | 18.57±2.06 |
NJU2399 | N01B-300cm | 3.0 | 33.01±1.08 | 42.98±0.64 | 22/14 | 13.03±0.58 | 13.74±0.64 | — | 17.09±1.86 |
NJU2400 | N01B-420cm | 4.2 | 34.23±0.91 | 41.18±0.59 | 22/14 | 13.80±0.57 | 13.66±0.63 | — | 16.99±1.90 |
NJU2401 | N01B-500cm | 5.0 | 33.05±1.22 | 40.17±1.23 | 18/14 | 14.19±0.82 | 13.98±0.85 | — | 17.39±2.06 |
NJU3665 | XJZ-10cm | 0.1 | 0.88±0.11 | 0.52±0.01 | 5/17 | 0.31±0.04 | 0.15±0.01 | 1.68±0.88 | 0.17±0.02 |
NJU3666 | NHN-70cm | 0.7 | 18.90±0.62 | 23.32±0.47 | 27/15 | 5.97±0.33 | 5.77±0.33 | 1.82±0.84 | 6.79±0.58 |
NJU4011 | YWQ1-20cm | 0.2 | 1.88±0.09 | 2.61±0.05 | 14/15 | 0.74±0.05 | 0.83±0.05 | 1.56±0.85 | 0.94±0.09 |
NJU4012 | YWQ1-50cm | 0.5 | 2.27±0.12 | 3.09±0.20 | 16/14 | 0.91±0.06 | 0.99±0.08 | 1.61±0.89 | 1.13±0.13 |
NJU4013 | YWQ2-20cm | 0.2 | 22.32±0.82 | 31.64±0.50 | 20/15 | 7.63±0.45 | 8.64±0.48 | 0.99±0.84 | 9.42±0.90 |
NJU4014 | YWQ2-75cm | 0.75 | 19.33±1.05 | 25.04±1.25 | 19/13 | 7.47±0.48 | 7.69±0.53 | 1.73±0.88 | 8.99±1.02 |
Table 3 The equivalent dose values and dating results for the samples
实验 编号 | 样品 名称 | 深度 /m | 石英OSL 等效剂量 /Gy | 钾长石pIRIR150 等效剂量 /Gy | 测片数 (A/B)* | 石英OSL 年代 /ka | 钾长石pIRIR150 未校正年代 /ka | g-值 /(%/10a)** | 钾长石pIRIR150 校正年代 /ka |
---|---|---|---|---|---|---|---|---|---|
NJU2395 | N01A-S-380cm | 3.8 | 26.47±1.47 | 31.47±1.95 | 21/10 | 10.27±0.65 | 10.14±0.77 | — | 12.56±1.59 |
NJU2396 | N01B-15cm | 0.15 | 20.75±0.45 | 24.75±0.43 | 24/15 | 7.83±0.37 | 7.62±0.41 | 2.27±0.89 | 9.41±1.07 |
NJU2397 | N01B-60cm | 0.6 | 25.80±0.47 | 32.79±0.45 | 20/14 | 12.02±0.56 | 11.97±0.67 | — | 14.86±1.67 |
NJU2398 | N01B-180cm | 1.8 | 39.99±1.03 | 45.08±0.88 | 19/14 | 16.14±0.65 | 14.91±0.72 | — | 18.57±2.06 |
NJU2399 | N01B-300cm | 3.0 | 33.01±1.08 | 42.98±0.64 | 22/14 | 13.03±0.58 | 13.74±0.64 | — | 17.09±1.86 |
NJU2400 | N01B-420cm | 4.2 | 34.23±0.91 | 41.18±0.59 | 22/14 | 13.80±0.57 | 13.66±0.63 | — | 16.99±1.90 |
NJU2401 | N01B-500cm | 5.0 | 33.05±1.22 | 40.17±1.23 | 18/14 | 14.19±0.82 | 13.98±0.85 | — | 17.39±2.06 |
NJU3665 | XJZ-10cm | 0.1 | 0.88±0.11 | 0.52±0.01 | 5/17 | 0.31±0.04 | 0.15±0.01 | 1.68±0.88 | 0.17±0.02 |
NJU3666 | NHN-70cm | 0.7 | 18.90±0.62 | 23.32±0.47 | 27/15 | 5.97±0.33 | 5.77±0.33 | 1.82±0.84 | 6.79±0.58 |
NJU4011 | YWQ1-20cm | 0.2 | 1.88±0.09 | 2.61±0.05 | 14/15 | 0.74±0.05 | 0.83±0.05 | 1.56±0.85 | 0.94±0.09 |
NJU4012 | YWQ1-50cm | 0.5 | 2.27±0.12 | 3.09±0.20 | 16/14 | 0.91±0.06 | 0.99±0.08 | 1.61±0.89 | 1.13±0.13 |
NJU4013 | YWQ2-20cm | 0.2 | 22.32±0.82 | 31.64±0.50 | 20/15 | 7.63±0.45 | 8.64±0.48 | 0.99±0.84 | 9.42±0.90 |
NJU4014 | YWQ2-75cm | 0.75 | 19.33±1.05 | 25.04±1.25 | 19/13 | 7.47±0.48 | 7.69±0.53 | 1.73±0.88 | 8.99±1.02 |
1 | 朱震达,王涛.从若干典型地区的研究对近十余年来中国土地沙漠化演变趋势的分析[J].地理学报,1990,45(4):430-440. |
2 | 王涛,朱震达.我国沙漠化研究的若干问题:1.沙漠化的概念及其内涵[J].中国沙漠,2003,23(3):3-8. |
3 | 苏志珠,卢琦,吴波,等.气候变化和人类活动对我国荒漠化的可能影响[J].中国沙漠,2006,26(3):329-335 |
4 | 傅伯杰,田汉勤,陶福禄,等.全球变化对生态系统服务的影响[J].中国基础科学,2017,19(6):14-18. |
5 | 陈发虎,傅伯杰,夏军,等.近70年来中国自然地理与生存环境基础研究的重要进展与展望[J].中国科学:地球科学,2019,49(11):1659-1696. |
6 | 徐志伟,鹿化煜.毛乌素沙地风沙环境变化研究的理论和新认识[J].地理学报,2021,76(9):2203-2223. |
7 | 李新荣,张志山,谭会娟,等.我国北方风沙危害区生态重建与恢复:腾格里沙漠土壤水分与植被承载力的探讨[J].中国科学:生命科学,2014,44(3):257-266. |
8 | Chen F H, Cheng B, Zhao H,et al.Post-glacial climate variability and drought events in the monsoon transition zone of western China[J].Developments in Quaternary Sciences,2007,9:25-39 |
9 | Guan Q Y, Pan B T, Li N,et al.Loess record of the evolution history of severe sandstorms in the Tengger Desert during the Last Interglacial Period(MIS5)[J].Geosciences Journal,2010,14(2):155-162. |
10 | 张正偲,董治宝.腾格里沙漠东南缘春季降尘量和粒度特征[J].中国环境科学,2011,31(11):1789-1794. |
11 | 崔梦淳,鹿化煜, Sweeney M R,等.便携式粉尘观测仪测定腾格里沙漠和毛乌素沙地PM10释放通量[J].科学通报,2015,60(17):1621-1630. |
12 | Wang S S, Yu Y, Zhang X X,et al.Weakened dust activity over China and Mongolia from 2001 to 2020 associated with climate change and land-use management[J].Environmental Research Letters,2021,16(12):124056. |
13 | 闫满存,董光荣,李保生,等.腾格里沙漠东南缘沙漠演化的初步研究[J].中国沙漠,1998,18(2):111-117. |
14 | 冯晗,鹿化煜,弋双文,等.末次盛冰期和全新世大暖期中国季风区西北缘沙漠空间格局重建初探[J].第四纪研究,2013,33(2):252-259. |
15 | Qiang M R, Chen F H, Wang Z T,et al.Aeolian deposits at the southeastern margin of the Tengger Desert(China):implications for surface wind strength in the Asian dust source area over the past 20,000 years[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2010,286(1):66-80. |
16 | Qiang M R, Stevens T, Li G Q,et al.Late Quaternary dust,loess and desert dynamics in upwind areas of the Chinese Loess Plateau[J].Frontiers in Earth Science,2021,9:661874. |
17 | Li Z J, Sun D H, Chen F H,et al.Chronology and paleoenvironmental records of a drill core in the central Tengger Desert of China[J].Quaternary Science Reviews,2014,85:85-98. |
18 | Peng J, Dong Z B, Han F Q,et al.Optically stimulated luminescence dating of sandy deposits from Gulang county at the southern margin of the Tengger Desert,China[J].Journal of Arid Land,2016,8(1):1-12. |
19 | Peng J, Wang X L, Yin G M,et al.Accumulation of aeolian sediments around the Tengger Desert during the late Quaternary and its implications on interpreting chronostratigraphic records from drylands in north China[J].Quaternary Science Reviews,2022,275:107288. |
20 | Fan Y X, Mou X S, Wang Y D,et al.Quaternary paleoenvironmental evolution of the Tengger Desert and its implications for the provenance of the loess of the Chinese Loess Plateau[J].Quaternary Science Reviews,2018,197:21-34. |
21 | Fan Y X, Li Z J, Yang G L,et al.Sedimentary evidence and luminescence and ESR dating of Early Pleistocene high lake levels of Megalake Tengger,northwestern China[J].Journal of Quaternary Science,2020,35(8):994-1006. |
22 | 范育新,张青松,蔡青松,等.光释光年代学对腾格里沙漠化机制及风沙物源的指示[J].第四纪研究,2022,42(2):350-367. |
23 | Lu H Y, Miao X D, Zhou Y L,et al.Late Quaternary aeolian activity in the Mu Us and Otindag dune fields(north China)and lagged response to insolation forcing[J].Geophysical Research Letters,2005,32(21):L21716. |
24 | Lu H Y, Yi S W, Xu Z W,et al.Chinese deserts and sand fields in Last Glacial Maximum and Holocene Optimum[J].Chinese Science Bulletin,2013,58(23):2775-2783. |
25 | Yang L H, Zhou J, Lai Z P,et al.Lateglacial and Holocene dune evolution in the Horqin dunefield of northeastern China based on luminescence dating[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2010,296(1/2):44-51. |
26 | Yu L P, Lai Z P.OSL chronology and palaeoclimatic implications of aeolian sediments in the eastern Qaidam Basin of the northeastern Qinghai-Tibetan Plateau[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2012,337/338:120-129. |
27 | Zhao H, Li G Q, Sheng Y W,et al.Early-middle Holocene lake-desert evolution in northern Ulan Buh Desert,China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2012,331/332:31-38. |
28 | 杨利荣,岳乐平.光释光测年揭示的科尔沁沙地末次晚冰期-全新世沙漠空间格局变化[J].第四纪研究,2013,33(2):260-268. |
29 | 周亚利,鹿化煜,张小艳,等.末次盛冰期和全新世大暖期浑善达克沙地边界的变化[J].第四纪研究,2013,33(2):228-242 |
30 | Chen F H, Li G Q, Zhao H,et al.Landscape evolution of the Ulan Buh Desert in northern China during the late Quaternary[J].Quaternary Research,2014,81(3):476-487. |
31 | Xu Z W, Lu H Y, Yi S W,et al.Climate-driven changes to dune activity during the Last Glacial Maximum and deglaciation in the Mu Us dune field,north-central China[J].Earth and Planetary Science Letters,2015,427:149-159. |
32 | Xu Z W, Mason J A, Xu C,et al.Critical transitions in Chinese dunes during the past 12,000 years[J].Science Advances,2020,6(9):eaay8020. |
33 | 杨小平,梁鹏,张德国,等.中国东部沙漠/沙地全新世地层序列及其古环境[J].中国科学:地球科学,2019,49(8):1293-1307. |
34 | 杨小平,杜金花,梁鹏,等.晚更新世以来塔克拉玛干沙漠中部地区的环境演变[J].科学通报,2021,66(24):3205-3218. |
35 | 强明瑞,李森,金明,等.60 ka来腾格里沙漠东南缘风成沉积与沙漠演化[J].中国沙漠,2000,20(3):256-259. |
36 | Long H, Lai Z P, Fan Q S,et al.Applicability of a quartz OSL standardised growth curve for De determination up to 400 Gy for lacustrine sediments from the Qaidam Basin of the Qinghai-Tibetan Plateau[J].Quaternary Geochronology,2010,5(2/3):212-217. |
37 | Long H, Lai Z P, Fuchs M,et al.Palaeodunes intercalated in loess strata from the western Chinese Loess Plateau:timing and palaeoclimatic implications[J].Quaternary International,2012,263:37-45. |
38 | Peng J, Dong Z B, Han F Q,et al.Aeolian activity in the south margin of the Tengger Desert in northern China since the Late Glacial Period revealed by luminescence chronology[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2016,457:330-341. |
39 | Fan Y X, Li Z J, Cai Q S,et al.Dating of the late quaternary high lake levels in the Jilantai area,northwestern China,using optical luminescence of quartz and K-feldspar[J].Journal of Asian Earth Sciences,2022,224:105024. |
40 | 王乃昂,张虎才,曹继秀,等.腾格里沙漠南缘武威黄土剖面磁性地层年代初步研究[J].兰州大学学报(自然科学版),1997,33(4):144-146. |
41 | 张虎才,马玉贞,李吉均,等.腾格里沙漠南缘全新世古气候变化初步研究[J].科学通报,1998,43(12):1252-1258. |
42 | 高尚玉,王贵勇,哈斯,等.末次冰期以来中国季风区西北边缘沙漠演化研究[J].第四纪研究,2001,21(1):66-71. |
43 | Zhang H C, Peng J L, Ma Y Z,et al.Late Quaternary palaeolake levels in Tengger Desert,NW China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2004,211(1/2):45-58. |
44 | Wu G J, Pan B T, Li J J,et al.Tectonic-climatic events in eastern Qilian Mountains over the past 0.83 Ma[J].Science in China Series D:Earth Sciences,2001,44(1):251. |
45 | 李琼,潘保田,高红山,等.腾格里沙漠南缘末次冰盛期以来沙漠演化与气候变化[J].中国沙漠,2006,26(6):875-879. |
46 | Yu Y T, Yang T B, Li J J,et al.Millennial-scale Holocene climate variability in the NW China drylands and links to the tropical Pacific and the North Atlantic[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2006,233(1):149-162. |
47 | 隆浩,沈吉.青藏高原及其邻区晚更新世高湖面事件的年代学问题:以柴达木盆地和腾格里沙漠为例[J].中国科学:地球科学,2015,45(1):52-65. |
48 | Sun Y B, Clemens S C, Morrill C,et al.Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J].Nature Geoscience,2012,5(1):46-54 |
49 | Long H, Lai Z P, Fuchs M,et al.Late Quaternary palaeolake evolution in Tengger Desert of northern China:timing and possible forcing mechanisms[J].Global and Planetary Change,2012,92/93:119-129 |
50 | Duller G A T.Behavioural studies of stimulated luminescence from feldspars[J].Radiation Measurements,1997,27(5):663-694. |
51 | Huntley D J, Lamothe M.Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating[J].Canadian Journal of Earth Sciences,2001,38(7):1093-1106. |
52 | Madsen A, Buylaert J P, Murray A S.Luminescence dating of young coastal deposits from New Zealand using feldspar[J].Geochronometria,2011,38(4):379-390. |
53 | Thomsen K J, Murray A S, Jain M,et al.Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts[J].Radiation Measurements,2008,43(9):1474-1486. |
54 | Jain M, Ankjærgaard C.Towards a non-fading signal in feldspar:insight into charge transport and tunnelling from time-resolved optically stimulated luminescence[J].Radiation Measurements,2011,46(3):292-309. |
55 | Li B, Li S H.Luminescence dating of K-feldspar from sediments:a protocol without anomalous fading correction[J].Quaternary Geochronology,2011,6(5):468-479. |
56 | Buylaert J P, Murray A S, Thomsen K J,et al.Testing the potential of an elevated temperature IRSL signal from K-feldspar[J].Radiation Measurements,2009,44(5/6):560-565. |
57 | Buylaert J P, Jain M, Murray A S,et al.A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments:feldspar luminescence dating of Middle and Late Pleistocene sediments[J].Boreas,2012,41(3):435-451. |
58 | Thiel C, Buylaert J P, Murray A S,et al.Luminescence dating of the Stratzing loess profile(Austria):Testing the potential of an elevated temperature post-IR IRSL protocol[J].Quaternary International,2011,234(1/2):23-31. |
59 | Lowick S E, Trauerstein M, Preusser F.Testing the application of post IR-IRSL dating to fine grain waterlain sediments[J].Quaternary Geochronology,2012,8:33-40. |
60 | Li G Q, Li F L, Jin M,et al.Late Quaternary lake evolution in the Gaxun Nur basin,central Gobi Desert,China,based on quartz OSL and K-feldspar pIRIR dating of paleoshorelines[J].Journal of Quaternary Science,2017,32(3):347-361. |
61 | Reimann T, Tsukamoto S, Naumann M,et al.The potential of using K-rich feldspars for optical dating of young coastal sediments:a test case from Darss-Zingst peninsula (southern Baltic Sea coast)[J].Quaternary Geochronology,2011,6(2):207-222. |
62 | Reimann T, Tsukamoto S.Dating the recent past(<500 years)by post-IR IRSL feldspar- Examples from the North Sea and Baltic Sea coast[J].Quaternary Geochronology,2012,10:180-187. |
63 | Fu X, Li S H.A modified multi-elevated-temperature post-IR IRSL protocol for dating Holocene sediments using K-feldspar[J].Quaternary Geochronology,2013,17:44-54. |
64 | Zhao H, Li S H, Li B,et al.Holocene climate changes in westerly-dominated areas of central Asia:evidence from optical dating of two loess sections in Tianshan Mountain,China[J].Quaternary Geochronology,2015,30:188-193. |
65 | Long H, Haberzettl T, Tsukamoto S,et al.Luminescence dating of lacustrine sediments from Tangra Yumco(southern Tibetan Plateau)using post-IR IRSL signals from polymineral grains:luminescence dating of lacustrine sediments,southern Tibetan Plateau[J].Boreas,2015,44(1):139-152. |
66 | 吴正.中国沙漠及其治理[M].北京:科学出版社,2009:1-714. |
67 | 王涛,吴薇,薛娴,等.近50年来中国北方沙漠化土地的时空变化[J].地理学报,2004,59(2):203-212. |
68 | Murray A S, Wintle A G.Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J].Radiation Measurements,2000,32(1):57-73. |
69 | Murray A S, Wintle A G.The single aliquot regenerative dose protocol:potential for improvements in reliability[J].Radiation Measurements,2003,37(4/5):377-381. |
70 | Banerjee D, Murray A S, Bøtter-Jensen L,et al.Equivalent dose estimation using a single aliquot of polymineral fine grains[J].Radiation Measurements,2001,33(1):73-94. |
71 | 彭俊,韩凤清.腾格里沙漠南缘风积物快组分光释光信号选择研究[J].地球学报,2013,34(6):757-762. |
72 | Murray A S.Incomplete stimulation of luminescence in young quartz sediments and its effect on the regenerated signal[J].Radiation Measurements,1996,26(2):221-231. |
73 | Wallinga J, Murray A, Duller G.Underestimation of equivalent dose in single-aliquot optical dating of feldspars caused by preheating[J].Radiation Measurements,2000,32(5/6):691-695. |
74 | Stevens T, Marković S B, Zech M,et al.Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle[J].Quaternary Science Reviews,2011,30(5/6):662-681. |
75 | Alexanderson H, Murray A S.Luminescence signals from modern sediments in a glaciated bay,NW Svalbard[J].Quaternary Geochronology,2012,10:250-256. |
76 | Buylaert J P, Thiel C, Murray A,et al.IRSL and post-IR IRSL residual doses recorded in modern dust samples from the Chinese Loess Plateau[J].Geochronometria,2011,38(4):432-440. |
77 | Yi S W, Buylaert J P, MurrayA S,et al.A detailed post-IR IRSL dating study of the Niuyangzigou loess site in northeastern China[J].Boreas,2016,45(4):644-657. |
78 | Auclair M, Lamothe M, Huot S.Measurement of anomalous fading for feldspar IRSL using SAR[J].Radiation Measurements,2003,37(4/5):487-492. |
79 | 李国强,赵晖,文星,等.钾长石矿物在全新世样品光释光测年中的应用与校正问题[J].第四纪研究,2010,30(1):54-61. |
80 | Guérin G, Mercier N, Adamiec G.Dose-rate conversion factors:update[J].Ancient TL,2011,29(1):5-8. |
81 | Huntley D J, Baril M R.The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating[J].Ancient TL,1997,15(1):11-13. |
82 | Huntley D J, Hancock RGV.The Rb contents of the K-feldspar grains being measured in optical dating[J].Ancient TL,2001,19(2):43-46. |
83 | Prescott J R, Hutton J T.Cosmic ray contributions to dose rates for luminescence and ESR dating:large depths and long-term time variations[J].Radiation Measurements,1994,23(2/3):497-500. |
84 | Durcan J A, King G E, Duller G A T.DRAC:Dose rate and age Calculator for trapped charge dating[J].Quaternary Geochronology,2015,28:54-61. |
85 | Xu Z W, Mason J A, Lu H Y,et al.Crescentic dune migration and stabilization:implications for interpreting paleo-dune deposits as paleoenvironmental records[J].Journal of Geographical Sciences,2017,27(11):1341-1358. |
86 | 冯玉静,隆浩,黄银洲,等.毛乌素沙地东南缘全新世湖相地层石英和钾长石释光测年对比[J].湖泊科学,2015,27(3):535-547. |
87 | Murray A S, Thomsen K J, Masuda N,et al.Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals[J].Radiation Measurements,2012,47(9):688-695. |
88 | Murray A S, Arnold L J, Buylaert J P,et al.Optically stimulated luminescence dating using quartz[J].Nature Reviews Methods Primers,2021,1(1):72. |
89 | Buylaert J P, Murray A S, Gebhardt A C,et al.Luminescence dating of the PASADO core 5022-1D from Laguna Potrok Aike(Argentina)using IRSL signals from feldspar[J].Quaternary Science Reviews,2013,71:70-80. |
90 | Zong H R, Fu X, Li Z J,et al.Multi-method pIRIR dating of sedimentary sequences at the southern edge of the Gurbantunggut Desert,NW China and its palaeoenvironmental implications[J].Quaternary Geochronology,2022,70:101300. |
91 | Li S H, Chen Y Y, Li B,et al.OSL dating of sediments from deserts in northern China[J].Quaternary Geochronology,2007,2(1):23-28. |
92 | Li B, Li S H, Wintle A G,et al.Isochron dating of sediments using luminescence of K-feldspar grains[J].Journal of Geophysical Research,2008,113(F2):F02026. |
93 | Wallinga J, Bos A J J, Dorenbos P,et al.A test case for anomalous fading correction in IRSL dating[J].Quaternary Geochronology,2007,2(1/4):216-221. |
94 | Li G Q, Zhao H, Chen F H.Comparison of three K-feldspar luminescence dating methods for Holocene samples[J].Geochronometria,2011,38(1):14-22. |
95 | Li B, Li S H, Wintle A G,et al.Isochron measurements of naturally irradiated K-feldspar grains[J].Radiation Measurements,2007,42(8):1315-1327. |
96 | Lu H Y, Zhao C F, Mason J,et al.Holocene climatic changes revealed by aeolian deposits from the Qinghai Lake area(northeastern Qinghai-Tibetan Plateau)and possible forcing mechanisms[J].The Holocene,2011,21(2):297-304. |
97 | Qiang M R, Chen F H, Song L,et al.Late Quaternary aeolian activity in Gonghe Basin,northeastern Qinghai-Tibetan Plateau,China[J].Quaternary Research,2013,79(3):403-412. |
98 | Qiang M Q, Jin Y X, Liu X X,et al.Late Pleistocene and Holocene aeolian sedimentation in Gonghe Basin,northeastern Qinghai-Tibetan Plateau:Variability,processes,and climatic implications[J].Quaternary Science Reviews,2016,132:57-73. |
99 | 刘东生.黄土与环境[M].北京:科学出版社,1985:1-510. |
100 | Zhang H C, Ma Y Z, Wünnemann B,et al.A Holocene climatic record from arid northwestern China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2000,162(3):389-401. |
101 | Yang X P, Scuderi L, Paillou P,et al.Quaternary environmental changes in the drylands of China:a critical review[J].Quaternary Science Reviews,2011,30(23):3219-3233. |
102 | Shi Q, Chen F H, Zhu Y,et al.Lake evolution of the terminal area of Shiyang River drainage in arid China since the last glaciation[J].Quaternary International,2002,93/94:31-43. |
103 | Li Z L, Wang N A, Li R L,et al.Indication of millennial-scale moisture changes by the temporal distribution of Holocene calcareous root tubes in the deserts of the Alashan Plateau,Northwest China[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2015,440:496-505. |
104 | 曹志宏.腾格里沙漠及其边缘区千年以来的气候环境变化[D].兰州:兰州大学,2018. |
105 | Fan Y X, Zhang F, Zhang F,et al.History and mechanisms for the expansion of the Badain Jaran Desert,northern China,since 20 ka:geological and luminescence chronological evidence[J].The Holocene,2016,26(4):532-548. |
106 | 白虎志,董安祥,郑广芬.中国西北地区近500年旱涝分布图集:1470-2008[M].北京:气象出版社,2010:1-320. |
[1] | Bing Jia, Jianhua Si, Zhibo Wu, Shi Qi, Lili Ma, Xinglin Zhu, Jie Qin, Funian Shi. Effects of seed pelleting in aerial seeding on vegetation and soil [J]. Journal of Desert Research, 2023, 43(2): 195-204. |
[2] | Hongfei Jia, Rongliang Jia, Xiuli Wu, Yun Zhao, Lichao Liu, Yanhong Gao, Haotian Yang, Tian Zhang. Effects of biocrust on soil swelling in arid desert [J]. Journal of Desert Research, 2023, 43(2): 28-36. |
[3] | Funing Yang, Lü Ping, Fang Ma, Min Cao, Nan Xiao, Lixia Gu, Ying Yang. Morphological evolution and migration characteristics of reticulate dunes at southern fringe of Tengger Desert [J]. Journal of Desert Research, 2023, 43(1): 107-115. |
[4] | Aibaidoula Gulayisaimu, Feng Zhang, Feng Wu, Shixin Wu, Jianghua Zheng, Tao Sun. Grain size characteristics of dune sands and spatial variation in the Tengger Desert [J]. Journal of Desert Research, 2022, 42(5): 133-145. |
[5] | Yunfeng Zhang, Yijuan Ma, Zhizhu Su, Aimin Liang, Xin Zhang, Yingying Cui. Dune movement in the joint zone of the Badain Jaran Desert and Tengger Desert [J]. Journal of Desert Research, 2022, 42(5): 82-91. |
[6] | Min Chen, Baosheng Li, Fengnian Wang, Dongfeng Niu, Xiaohao Wen, Peixian Shu, Yuejun Si, Qinjiang Yang, Chen Wang. High-resolution monsoonal environment change in MIS3 based on trace elements in the Tumen Section on the southweest edge of Tegger Desert [J]. Journal of Desert Research, 2022, 42(4): 253-263. |
[7] | Wenfan Wang, Rentao Liu, Zhixia Guo, Yonghong Feng, Jiayu Jiang. Physical and chemical properties and fractal dimension distribution of soil under shrubs in the southern area of Tengger Dseart [J]. Journal of Desert Research, 2021, 41(1): 209-218. |
[8] | Haotian Yang, Xinrong Li, Peijie Yan, Yunfei Li, Quanlin Ma. Soil types and spatial distribution in Tengger Desert [J]. Journal of Desert Research, 2020, 40(4): 154-162. |
[9] | Bingyao Wang, Xingchen Liu, Lichao Liu. Characteristics of precipitation in the surrounding area of Tengger Desert in 1957-2017 [J]. Journal of Desert Research, 2020, 40(4): 163-170. |
[10] | Yingwu Chen, Qingxiao Chen, Haotian Yang. Diversity and fauna of terrestrial wild vertebrate in Tengger Desert [J]. Journal of Desert Research, 2020, 40(4): 171-182. |
[11] | Changzhen Yan, Sen Li, Junfeng Lu, Lichao Liu. Lake number and area in the Tengger Desert during 1975-2015 [J]. Journal of Desert Research, 2020, 40(4): 183-189. |
[12] | Quanlin Ma, Jinchun Zhang, Fang Chen, Dekui Zhang, Linyuan Wei. Mechanism and dynamics for succession of artificial Hedysarum scoparium sand-binding forests at the southern edge of Tengger Desert [J]. Journal of Desert Research, 2020, 40(4): 206-215. |
[13] | Yingwu Chen, Qingxiao Chen, Haotian Yang. Diversity and fauna of terrestrial wild vertebrates in the Tengger Desert [J]. Journal of Desert Research, 2020, 40(4): 216-222. |
[14] | Delu Li, Quanlin Ma, Jinchun Zhang, Fang Chen, Xinrong Li, Hongbo Yuan, Linyuan Wei, Haotian Yang, Zhong Zhang. Vegetation characteristics of the Tengger Desert [J]. Journal of Desert Research, 2020, 40(4): 223-233. |
[15] | Wang Yansong, Liu Yubing, Wang Zengru, Zhao Lina, Qi Jinghua, Zhang Wenli. Iron metabolism microbial composition and functional genes response to succession of biological soil crust [J]. Journal of Desert Research, 2020, 40(3): 193-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech