Journal of Desert Research ›› 2023, Vol. 43 ›› Issue (1): 58-65.DOI: 10.7522/j.issn.1000-694X.2022.00087
Previous Articles Next Articles
Lu Yang1(), Xin Liu1, Changcheng Zhao1, Qiaozhen Kang1, Jike Lu1, Pengshan Zhao2(
)
Received:
2022-03-24
Revised:
2022-05-30
Online:
2023-01-20
Published:
2023-01-17
Contact:
Pengshan Zhao
CLC Number:
Lu Yang, Xin Liu, Changcheng Zhao, Qiaozhen Kang, Jike Lu, Pengshan Zhao. Progress on the structural and physicochemical properties of sand rice ( Agriophyllum squarrosum ) starch[J]. Journal of Desert Research, 2023, 43(1): 58-65.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2022.00087
淀粉样品 | R1047/1022 | 原生淀粉/湿热处理 | |
---|---|---|---|
X-射线模式 | 结晶度/% | ||
沙米淀粉[ | 0.6360±0.005 | A/A | 22.00~37.95/38.17±0.25 |
藜麦淀粉[ | 1.0100±0.01 | A/A | 21.50~43.00/32.31 |
玉米淀粉[ | 1.0063±0.05 | A/A+V | 25.26±0.00/28.3±0.01 |
小麦淀粉[ | 0.8551±0.02 | A/A | 26.47±0.35/22.16±0.10 |
马铃薯淀粉[ | 1.3700±0.01 | B/A+B | 26.86±0.17/12.99±0.72 |
Table 1 Summary of FT-IR, X-ray and relative crystallinity of the native and HMT-modified starches in different crops
淀粉样品 | R1047/1022 | 原生淀粉/湿热处理 | |
---|---|---|---|
X-射线模式 | 结晶度/% | ||
沙米淀粉[ | 0.6360±0.005 | A/A | 22.00~37.95/38.17±0.25 |
藜麦淀粉[ | 1.0100±0.01 | A/A | 21.50~43.00/32.31 |
玉米淀粉[ | 1.0063±0.05 | A/A+V | 25.26±0.00/28.3±0.01 |
小麦淀粉[ | 0.8551±0.02 | A/A | 26.47±0.35/22.16±0.10 |
马铃薯淀粉[ | 1.3700±0.01 | B/A+B | 26.86±0.17/12.99±0.72 |
淀粉样品 | 原生淀粉/湿热处理 | ||||
---|---|---|---|---|---|
峰值黏度/(mPa·s) | 最终黏度/(mPa·s) | 崩解值/(mPa·s) | 回生值/(mPa·s) | 糊化温度/℃ | |
沙米淀粉[ | 2 543±36/1 846±8 | 3 998±27/3 674±35 | 868±94/173±48 | 2 400±48/2 002±57 | 46.98±0.49/50.70±0.73 |
藜麦淀粉[ | 3 756±5/3 748±9 | 4 049±5/3 289±5 | 1 064±11/633±14 | 869±6/606±21 | 60.30±0.40/75.05±0.83 |
小麦淀粉[ | 2 484±25/643±10 | 3 062±91/850±2 | 408±11/61±7 | 986±77/268±1 | 88.43±0.53/92.45±0.64 |
马铃薯淀粉[ | 7 297±37/257±4 | 2 827±8/366±5 | 5 688±150/15±1 | 1 218±105/123±1 | 67.88±0.40/— |
大米[ | 3 380±14/ | 3 048±15/ | 1 626±9/ | 1 292±10/ | 79.90±0.30/ |
Table 2 Pasting characteristics of the native and HMT-modified starches in different crops
淀粉样品 | 原生淀粉/湿热处理 | ||||
---|---|---|---|---|---|
峰值黏度/(mPa·s) | 最终黏度/(mPa·s) | 崩解值/(mPa·s) | 回生值/(mPa·s) | 糊化温度/℃ | |
沙米淀粉[ | 2 543±36/1 846±8 | 3 998±27/3 674±35 | 868±94/173±48 | 2 400±48/2 002±57 | 46.98±0.49/50.70±0.73 |
藜麦淀粉[ | 3 756±5/3 748±9 | 4 049±5/3 289±5 | 1 064±11/633±14 | 869±6/606±21 | 60.30±0.40/75.05±0.83 |
小麦淀粉[ | 2 484±25/643±10 | 3 062±91/850±2 | 408±11/61±7 | 986±77/268±1 | 88.43±0.53/92.45±0.64 |
马铃薯淀粉[ | 7 297±37/257±4 | 2 827±8/366±5 | 5 688±150/15±1 | 1 218±105/123±1 | 67.88±0.40/— |
大米[ | 3 380±14/ | 3 048±15/ | 1 626±9/ | 1 292±10/ | 79.90±0.30/ |
淀粉样品 | 起始温度T0/℃ | 峰值温度Tp/℃ | 终止温度Tc/℃ | 糊化范围温度(Tc-T0)/℃ | 热焓值ΔH/(J·g-1) |
---|---|---|---|---|---|
沙米淀粉[ | 69.77±0.04/72.78±0.04 | 74.16±0.19/78.20±0.17 | 92.25±0.42/92.03±0.32 | 22.48±0.38/19.25±0.28 | 24.37±0.79/21.08±0.26 |
藜麦淀粉[ | 52.65/54.70 | 58.57/60.75 | 70.57/66.12 | 17.92/14.62 | 2.51/1.43 |
玉米淀粉[ | 71.60±0.90/92.20±0.37 | 77.30±1.10/96.92±0.84 | 82.11±0.86/103.39±0.65 | 9.51±0.96/10.19±0.95 | 10.07±0.67/5.45±0.49 |
小麦淀粉[ | 57.69±0.19/60.54±0.11 | 61.88±0.10/80.62±0.06 | 67.47±0.53/105.23±0.05 | 9.78±0.72/44.69±0.06 | 28.26±0.15/4.66±0.28 |
马铃薯淀粉[ | 60.93±0.18/63.55±0.02 | 64.93±0.06/83.55±0.21 | 73.19±0.18/97.14±0.11 | 12.26±0.01/33.59±0.13 | 18.19±0.07/10.35±0.28 |
Table 3 DSC thermal dynamic parameters of the native and HMT-modified starches in different crops
淀粉样品 | 起始温度T0/℃ | 峰值温度Tp/℃ | 终止温度Tc/℃ | 糊化范围温度(Tc-T0)/℃ | 热焓值ΔH/(J·g-1) |
---|---|---|---|---|---|
沙米淀粉[ | 69.77±0.04/72.78±0.04 | 74.16±0.19/78.20±0.17 | 92.25±0.42/92.03±0.32 | 22.48±0.38/19.25±0.28 | 24.37±0.79/21.08±0.26 |
藜麦淀粉[ | 52.65/54.70 | 58.57/60.75 | 70.57/66.12 | 17.92/14.62 | 2.51/1.43 |
玉米淀粉[ | 71.60±0.90/92.20±0.37 | 77.30±1.10/96.92±0.84 | 82.11±0.86/103.39±0.65 | 9.51±0.96/10.19±0.95 | 10.07±0.67/5.45±0.49 |
小麦淀粉[ | 57.69±0.19/60.54±0.11 | 61.88±0.10/80.62±0.06 | 67.47±0.53/105.23±0.05 | 9.78±0.72/44.69±0.06 | 28.26±0.15/4.66±0.28 |
马铃薯淀粉[ | 60.93±0.18/63.55±0.02 | 64.93±0.06/83.55±0.21 | 73.19±0.18/97.14±0.11 | 12.26±0.01/33.59±0.13 | 18.19±0.07/10.35±0.28 |
淀粉样品 | 膨胀力/(g·g-1) | 溶解度/% | RDS/% | SDS/% | RS/% |
---|---|---|---|---|---|
沙米淀粉[ | 13.43±0.75/8.35±0.04 | 10.00±0.35/2.80±0.20 | 53.21/44.33±0.15 | 38.40/40.92±0.55 | 8.39/14.75±0.40 |
藜麦淀粉[ | 13.55±0.02/10.88±0.02 | 10.14±0.01/6.95±0.01 | 55.33±0.00/45.58±0.15 | 35.70±0.07/40.24±0.01 | 9.44±0.13/13.50±0.08 |
小麦淀粉[ | 11.15±0.03/8.30±0.05 | 14.19±0.04/19.79±0.05 | 60.57±0.10/33.83±0.14 | 22.25±0.02/45.61±0.04 | 17.18±0.11/20.56±0.12 |
马铃薯淀粉[ | 25.08±0.19/8.56±0.10 | 22.47±0.27/9.83±0.14 | 21.71±0.19/5.46±0.15 | 2.95±0.03/6.72±0.04 | 75.34±0.17/87.82±0.19 |
玉米淀粉[ | 10.29±0.14/ | 9.30±0.20/ | 47.80±0.65/ | 43.80±0.60/ | 8.40±0.55/ |
大米淀粉[ | 12.30±0.75/ | 6.77±0.18/ | 54.40±0.67/ | 39.50±0.87/ | 6.10±0.27/ |
Table 4 Swelling power, solubility and digestion properties of the native and HMT-modified starches in different crops
淀粉样品 | 膨胀力/(g·g-1) | 溶解度/% | RDS/% | SDS/% | RS/% |
---|---|---|---|---|---|
沙米淀粉[ | 13.43±0.75/8.35±0.04 | 10.00±0.35/2.80±0.20 | 53.21/44.33±0.15 | 38.40/40.92±0.55 | 8.39/14.75±0.40 |
藜麦淀粉[ | 13.55±0.02/10.88±0.02 | 10.14±0.01/6.95±0.01 | 55.33±0.00/45.58±0.15 | 35.70±0.07/40.24±0.01 | 9.44±0.13/13.50±0.08 |
小麦淀粉[ | 11.15±0.03/8.30±0.05 | 14.19±0.04/19.79±0.05 | 60.57±0.10/33.83±0.14 | 22.25±0.02/45.61±0.04 | 17.18±0.11/20.56±0.12 |
马铃薯淀粉[ | 25.08±0.19/8.56±0.10 | 22.47±0.27/9.83±0.14 | 21.71±0.19/5.46±0.15 | 2.95±0.03/6.72±0.04 | 75.34±0.17/87.82±0.19 |
玉米淀粉[ | 10.29±0.14/ | 9.30±0.20/ | 47.80±0.65/ | 43.80±0.60/ | 8.40±0.55/ |
大米淀粉[ | 12.30±0.75/ | 6.77±0.18/ | 54.40±0.67/ | 39.50±0.87/ | 6.10±0.27/ |
1 | 彭菁.沙米蛋白和淀粉的理化性质研究及应用[D].南京:南京农业大学,2017. |
2 | 张继义,赵哈林,崔建垣,等. 科尔沁沙地流动沙丘沙米群落生物量特征及其防风固沙作用[J]. 水土保持学报, 2003(3):152-154. |
3 | Zhao P, Li X, Sun H,et al.Healthy values and de novo domestication of sand rice (Agriophyllum squarrosum),a comparative view against Chenopodium quinoa [J].Critical Reviews in Food Science and Nutrition,2021,49:1-22. |
4 | 张建农,赵继荣,李计红.沙米种子营养成分的测定与分析[J].草业科学,2006,23(2):77-79. |
5 | 王莉梅,刘睿杰,金青哲,等.多不饱和脂肪酸在癌症发生中的作用机制研究进展[J].中国油脂,2014,39(8):37-41. |
6 | 许才康,孙华,马红梅.食用油脂的组份及其产品的优化[J].浙江农业科学,2001(5):41-42. |
7 | Yin X, Yan X, Qian C,et al.Comparative transcriptome analysis to identify genes involved in terpenoid biosynthesis in Agriophyllum squarrosum,a folk medicinal herb native to Asian temperature deserts[J].Plant Biotechnology Report,2021,15(3):369-387. |
8 | Birasuren B, Kim N Y, Jeon H L,et al.Evaluation of the antioxidant capacity and phenolic content of Agriophyllum pungens seed extracts from Mongolia[J].Prevention Nutrition and Food Science,2013,18(3):188-195. |
9 | Bao S, Wu Y L, Wang X,et al. Agriophyllum oligosaccharides ameliorate hepatic injury in type 2 diabetic db/db mice targeting INS-R/IRS-2/PI3K/AKT/PPAR-gamma/Glut4 signal pathway[J].Journal of Ethnopharmacology,2020,257:112863-112873. |
10 | 王琦,王安,闫帅帅,等.沙蓬籽的酚类组成、抗氧化活性及其淀粉体外消化特性[J].陕西师范大学学报(自然科学版),2020,48(5):42-47. |
11 | Xu H Y, Zheng H C, Zhang H W,et al.Comparison of antioxidant constituents of Agriophyllum squarrosum seed with conventional crop seeds[J].Journal of Food Science,2018,83(7):1823-1831. |
12 | Kossmann J, Lloyd J.Understanding and influencing starch biochemistry[J].Critical Reviews in Biochemistry and Molecular Biology,2000,35(3):141-196. |
13 | 李俊蓉.高直链淀粉小麦突变体的筛选与淀粉特性的鉴定[D].郑州:河南农业大学,2021. |
14 | Han L H, Qiu S, Cao S P,et al.Molecular characteristics and physicochemical properties of very small granule starch isolated from Agriophyllum squarrosum seeds[J].Carbohydrate Polymers,2021,273:118583-118592. |
15 | Li G, Zhu F.Quinoa starch:structure,properties,and applications[J].Carbohydrate Polymers,2018,181:851-861. |
16 | Wu K, Dai S, Gan R,et al.Thermal and rheological properties of Mung Bean starch blends with potato,sweet potato,rice,and sorghum starches[J].Food and Bioprocess Technology,2016,9(8):1408-1421. |
17 | Ren Y, Guo K, Zhang B,et al.Comparison of physicochemical properties of very small granule starches from endosperms of dicotyledon plants[J].International Journal of Biological Macromolecules,2020,154:818-825. |
18 | 贺晓鹏,朱昌兰,刘玲珑,等.不同水稻品种支链淀粉结构的差异及其与淀粉理化特性的关系[J].作物学报,2010,36:276-284. |
19 | Bertoft E, Piyachomkwan K, Chatakanonda P,et al.Internal unit chain composition in amylopectins[J].Carbohydrate Polymers,2008,74(3):527-543. |
20 | Chung H J, Hoover R, Liu Q.The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch[J].International Journal of Biological Macromolecules,2009,44(2):203-210. |
21 | Kong X L, Bertoft E, Bao J S,et al.Molecular structure of amylopectin from amaranth starch and its effect on physicochemical properties[J].International Journal of Biological Macromolecules,2008,43(4):377-382. |
22 | Li G, Zhu F.Amylopectin molecular structure in relation to physicochemical properties of quinoa starch[J].Carbohydrate Polymers,2017,164:396-402. |
23 | Kaur H, Gill B S.Effect of high-intensity ultrasound treatment on nutritional,rheological and structural properties of starches obtained from different cereals[J].International Journal of Biological Macromolecules,2019,126:367-375. |
24 | Zhu F.Structures,physicochemical properties,and applications of amaranth starch[J].Critical Reviews in Food Science and Nutrition,2017,57(2):313-325. |
25 | Sevenou O, Hill S E, Farhat I A,et al.Organisation of the external region of the starch granule as determined by infrared spectroscopy[J].International Journal of Biological Macromolecules,2002,31:79-85. |
26 | Liu K, Zhang B, Chen L,et al.Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment[J].Food Chemistry,2019,271:102-108. |
27 | Han L H, Wei Q, Cao S P,et al.The assisting effects of ultrasound on the multiscale characteristics of heat-moisture treated starch from Agriophyllum squarrosum seeds[J].International Journal of Biological Macromolecules,2021,187:471-480. |
28 | Wu C S, Ji G Y, Gao F,et al.Effect of heat-moisture treatment on the structural and physicochemical characteristics of sand rice (Agriophyllum squarrosum) starch[J].Nutrition & Food Science,2021,9(12):6720-6727. |
29 | 陈若瑄.藜麦粉的理化特性及其挤压型面条的制备[D].无锡:江南大学,2019. |
30 | 时超.湿热处理协同疏水改性藜麦淀粉的制备及其在皮克林乳液中的应用[D].沈阳:沈阳师范大学,2019. |
31 | 扶雄,张明,朱思明,等.湿热处理对玉米淀粉理化性质及消化性的影响[J].华南理工大学学报(自然科学版),2015,43(2):27-32. |
32 | 宫冰.反复/连续湿热处理对不同晶型淀粉结构和理化性质的影响机制[D].陕西杨凌:西北农林科技大学,2018. |
33 | 张琨.小麦淀粉糊化特性的全基因组关联分析[D].郑州:河南农业大学,2019. |
34 | 袁晓丽.藜麦淀粉的提取及改性后理化性质的分析[D].天津:天津科技大学,2017. |
35 | Ahamed N T, Singhal R S, Kulkarni P R,et al.Physicochemical and functional properties of Chenopodium quinoa starch[J].Carbohydrate Polymers,31:99-103. |
36 | 张明.湿热协同微波处理对淀粉理化性质及消化性的影响[D].广州:华南理工大学,2014. |
37 | Englyst H N, Veenstra J, Hudson G J.Measurement of rapidly available glucose (RAG) in plant foods:a potential in vitro predictor of the glycaemic response[J].British Journal of Nutrition,1996,75(3):327-337. |
38 | Englyst H N, Kingman S M, Cummings J H.Classification and measurement of nutritionally important starch fractions[J].European Journal of Clinical Nutrition,1992,46():S33-50. |
39 | Bello-Perez L A, Flores-Silva P C, Agama-Acevedo E,et al.Starch digestibility:past,present,and future[J].Journal of the Science of Food and Agriculture,2020,100(14):5009-5016. |
40 | 袁添瑨.藜麦面条加工工艺研究[D].郑州:河南工业大学,2020. |
41 | 冯佰利.湿热处理改性苦荞淀粉的理化性质及体外消化率[D].陕西杨凌:西北农林科技大学,2021. |
42 | 谢莹.小麦多孔淀粉的制备、结构性质及应用研究[D].合肥:合肥工业大学,2019. |
43 | He H, Zheng B, Wang H W,et al.Insights into the multi-scale structure and in vitro digestibility changes of rice starch-oleic acid/linoleic acid complex induced by heat-moisture treatment[J].Food Research International,2020,137:109612. |
44 | Kim H Y, Lee J H, Kim J Y,et al.Characterization of nanoparticles prepared by acid hydrolysis of various starches[J].Starch-Starke,2012,64(5):367-373. |
45 | Liu H, Lv M, Peng Q,et al.Physicochemical and textural properties of tartary buckwheat starch after heat-moisture treatment at different moisture levels[J].Starch-Starke,2015,67(3/4):276-284. |
46 | Dong J, Huang L, Chen W,et al.Effect of heat-moisture treatments on digestibility and physicochemical property of whole Quinoa flour[J].Foods,2021,10(12):3042-3053. |
47 | Zavareze E D, Dias A R G.Impact of heat-moisture treatment and annealing in starches:a review[J].Carbohydrate Polymers,2011,83(2):317-328. |
48 | 张奎亮,代养勇,侯汉学,等.超声处理对马铃薯淀粉结构特性及理化性质的影响[J].食品科学,2018,139(5):128-134. |
49 | Ali N A, Dash K K, Routray W.Physicochemical characterization of modified lotus seed starch obtained through acid and heat moisture treatment[J].Food Chemistry,2020,319:126513-126523. |
50 | Jan K N, Panesar P S, Rana J C,et al.Structural,thermal and rheological properties of starches isolated from Indian quinoa varieties[J].International Journal of Biological Macromolecules,2017,102:315-322. |
51 | 唐玮泽.多次湿热处理对大米淀粉和米粉消化性的影响[D].长沙:中南林业科技大学,2021. |
52 | Sullivan A C, Pangloli P, Dia V P.Impact of ultrasonication on the physicochemical properties of sorghum kafirin and in vitro pepsin-pancreatin digestibility of sorghum gluten-like flour[J].Food Chemistry,2018,240:1121-1130. |
53 | 张志华.超声波处理对淀粉结构与性质的影响研究[D].天津:天津科技大学,2012. |
54 | Sun Q, Han Z, Wang L,et al.Physicochemical differences between sorghum starch and sorghum flour modified by heat-moisture treatment[J].Food Chemistry,2014,145:756-764. |
55 | Zhu F, Li H.Modification of quinoa flour functionality using ultrasound[J].Ultrason Sonochem,2019,52:305-310. |
56 | 梁云浩,王周利,蔡瑞,等.超声波处理对糙米淀粉结构与理化性质的影响[J].食品研究与开发,2021,42(19):36-43. |
[1] | Yuqing Chen, Haiyang Xi, Wenju Cheng, Xinyue Zhao. Characteristics of soil carbon and nitrogen change in three typical plant communities in desert riparian forest area [J]. Journal of Desert Research, 2023, 43(1): 150-159. |
[2] | Xiao Zhang, Ping Yan, Miao Dong, Xiaokang Liu, Wenjie Yuan, Xiaoxu Wang. Preliminary results of sedimentary structure of compound crescentic dune in the lower reaches of Tora River Basin, Qaidam Basin probed with ground penetrating radar [J]. Journal of Desert Research, 2023, 43(1): 160-168. |
[3] | Weicheng Luo, Wenzhi Zhao, Jiliang Liu, Jingyi Yang, Xuelian Bai, Lemin Wei, Yilin Feng. Distribution pattern and influencing factors of ground arthropods in coalmines restoration area of Qilian Mountain Nature Reserve, China [J]. Journal of Desert Research, 2022, 42(6): 165-175. |
[4] | Shilong Li. Soil physicochemical properties of alpine grasslands under different desertification degrees in Maqu, Gansu, China [J]. Journal of Desert Research, 2022, 42(6): 44-52. |
[5] | Yingkun Li, Jinrong Li, Le Dong, Xiangying Luo, Zhaoen Han, Ru Wang. The wind and sand resistance effect of four vegetation types in Ulan Buhe Desert [J]. Journal of Desert Research, 2022, 42(6): 65-73. |
[6] | Yibin Li, Guihong Shi, Guiying Shi, Hongyu Yang, Hui Li. Effects of seed soaking on the changes of soil Microorganism flora in the rhizosphere of Lanzhou lily [J]. Journal of Desert Research, 2022, 42(3): 251-260. |
[7] | Xihao Xie, Zhizhong Li, Jianhui Jin, Rui Liu, Xiaojun Zou, Yunqiang Ma. Preliminary study on sedimentary structure and development model of vegetated linear dune in the southeastern Gurbantunggut Desert [J]. Journal of Desert Research, 2022, 42(3): 74-84. |
[8] | Xiaolong Zhao, Yuhong Xie, Xujun Ma, Shaokun Wang. Vegetation structure and its relationship with soil physicochemical properties in restoring sandy grassland in Horqin Sandy Land [J]. Journal of Desert Research, 2022, 42(2): 134-141. |
[9] | Yani Wang, Yigang Hu, Zengru Wang, Changsheng Li. Impacts of reclamation on salinization desert soil microbial community: a case study of Alar oasis [J]. Journal of Desert Research, 2021, 41(6): 126-137. |
[10] | Pan Yang, Wei Liang, Jianwu Yan, Siya Li, Zhiyang Lan. Multi-scale analysis of water system structure changes in the Yellow River Basin [J]. Journal of Desert Research, 2021, 41(6): 223-234. |
[11] | Yonghong Feng, Rentao Liu, Jixian Liu, Jiayu Jiang, Yanjiao Bai, Zhixia Guo, Wenfan Wang, Anning Zhang. Distribution characteristics of arthropod community structure in Artemisia ordosica shrub canopy in desert area [J]. Journal of Desert Research, 2021, 41(5): 94-102. |
[12] | Haifeng Yang, Anyu Li, Jiaqi Wang, Guosheng Zhang, Shusen Wang, Xin Zhang. Identification of fasciation phenotype and anatomic structure analysis in Salix psammophila [J]. Journal of Desert Research, 2021, 41(4): 45-50. |
[13] | Zeyu Teng, Shengchun Xiao, Xiaohong Chen, Chao Han. The soil bacterial condition beneath five shrub species in the central Alxa [J]. Journal of Desert Research, 2021, 41(4): 34-44. |
[14] | Yongdao Gao, Rongrong Qiao, Shuxin Ji, Xuelian Bai, Lixiang Wang, Xueli Chang. Changes and driving factors of crops planting structure in Hetao Irrigation Region in Inner Mongolia [J]. Journal of Desert Research, 2021, 41(3): 110-117. |
[15] | Liuwen Dong, Jialong Han, Wenzhi Zhao, Jiliang Liu, Yibin Ba. Comparison of ground arthropod community between Lake Wetland and adjacent sand dune in Heihe River Basin [J]. Journal of Desert Research, 2020, 40(6): 250-258. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech