Journal of Desert Research ›› 2025, Vol. 45 ›› Issue (3): 283-290.DOI: 10.7522/j.issn.1000-694X.2025.00101
Previous Articles Next Articles
Xinyang Song1(), Mengyu Mu1, Chenguang Zhao1, Jiazheng Wang1, Yanjun Huo2, Changming Zhao1, Chao Guan1(
)
Received:
2025-03-03
Revised:
2025-04-27
Online:
2025-05-20
Published:
2025-06-30
Contact:
Chao Guan
CLC Number:
Xinyang Song, Mengyu Mu, Chenguang Zhao, Jiazheng Wang, Yanjun Huo, Changming Zhao, Chao Guan. Close-to-nature restoration technological pattern for degraded Caragana korshinskii stands in the Loess Plateau[J]. Journal of Desert Research, 2025, 45(3): 283-290.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2025.00101
处理 | 新梢长度/cm | 分枝数/枝 |
---|---|---|
PC-1 | 24.74±10.61ab | 23.56±6.69b |
PC-2 | 37.67±6.14a | 49.94±10.75a |
PC-3 | 18.58±8.56ab | 17.9±6.61b |
PC-4 | 33.44±8.72a | 31.56±5.18ab |
PC-CK | 8.08±0.93b | 28.83±4.67b |
Table 1 Variations in growth parameters of Caraganakorshinskii under distinct coppicing regimes
处理 | 新梢长度/cm | 分枝数/枝 |
---|---|---|
PC-1 | 24.74±10.61ab | 23.56±6.69b |
PC-2 | 37.67±6.14a | 49.94±10.75a |
PC-3 | 18.58±8.56ab | 17.9±6.61b |
PC-4 | 33.44±8.72a | 31.56±5.18ab |
PC-CK | 8.08±0.93b | 28.83±4.67b |
衰退程度 | 处理 | 衰退指数 | 枯枝率/% | 植被覆盖度/% |
---|---|---|---|---|
轻度衰退 | HJ-1 | 1.28±0.20a | 7.44±2.68a | 50.26±1.15a |
HJ-2 | 1.41±0.18a | 6.68±2.48a | 48.08±3.93a | |
HJ-3 | 1.5±0.23a | 7.54±2.77a | 46.98±4.63a | |
HJ-CK | 1.26±0.20a | 7.67±1.90a | 42.32±1.69a | |
中度衰退 | HJ-1 | 1.32±0.11b | 6.56±1.08a | 50.43±4.49a |
HJ-2 | 1.34±0.20b | 6.39±2.68a | 47.39±4.16a | |
HJ-3 | 1.36±0.13b | 7.55±1.71a | 50.69±3.07a | |
HJ-CK | 1.74±0.06a | 9.44±3.43a | 47.63±2.19a | |
重度衰退 | HJ-1 | 1.86±0.09ab | 9.70±4.15a | 38.91±10.38a |
HJ-2 | 1.39±0.12b | 7.25±0.20a | 48.99±9.69a | |
HJ-3 | 1.44±0.19b | 6.22±2.42a | 45.44±11.19a | |
HJ-CK | 2.29±0.41a | 9.71±0.14a | 44.77±9.50a |
Table 2 Variations in growth parameters of Caraganakorshinskii under distinct mixed-species regimes
衰退程度 | 处理 | 衰退指数 | 枯枝率/% | 植被覆盖度/% |
---|---|---|---|---|
轻度衰退 | HJ-1 | 1.28±0.20a | 7.44±2.68a | 50.26±1.15a |
HJ-2 | 1.41±0.18a | 6.68±2.48a | 48.08±3.93a | |
HJ-3 | 1.5±0.23a | 7.54±2.77a | 46.98±4.63a | |
HJ-CK | 1.26±0.20a | 7.67±1.90a | 42.32±1.69a | |
中度衰退 | HJ-1 | 1.32±0.11b | 6.56±1.08a | 50.43±4.49a |
HJ-2 | 1.34±0.20b | 6.39±2.68a | 47.39±4.16a | |
HJ-3 | 1.36±0.13b | 7.55±1.71a | 50.69±3.07a | |
HJ-CK | 1.74±0.06a | 9.44±3.43a | 47.63±2.19a | |
重度衰退 | HJ-1 | 1.86±0.09ab | 9.70±4.15a | 38.91±10.38a |
HJ-2 | 1.39±0.12b | 7.25±0.20a | 48.99±9.69a | |
HJ-3 | 1.44±0.19b | 6.22±2.42a | 45.44±11.19a | |
HJ-CK | 2.29±0.41a | 9.71±0.14a | 44.77±9.50a |
衰退程度 | 处理 | 衰退指数 | 分枝数/枝 | 新梢长度/cm | 地上生物量/g | 植被覆盖度/% |
---|---|---|---|---|---|---|
轻度衰退 | JP-1 | 1.63±0.46a | 37.42±11.85a | 22.68±3.38a | 1 910.45±761.07a | 41.21±12.26a |
JP-2 | 1.67±0.43a | 35.53±6.53a | 22.86±5.99a | 1 821.82±810.45a | 32.64±9.22a | |
JP-CK | 1.26±0.20a | 36.08±15.29a | 24.22±6.46a | 1 527.73±822.73a | 33.62±2.20a | |
中度衰退 | JP-1 | 1.46±0.12a | 35.47±12.46a | 22.28±5.94a | 1 542.14±461.00a | 46.01±6.18a |
JP-2 | 1.86±0.57a | 39.81±13.25a | 24.63±6.34a | 1 411.01±536.10a | 46.30±8.22a | |
JP-CK | 1.74±0.06a | 38.33±14.98a | 21.65±4.46a | 1 286.57±398.13a | 44.84±9.64a | |
重度衰退 | JP-1 | 1.61±0.44ab | 31.96±15.62a | 18.41±7.34a | 752.56±462.49a | 39.29±17.26a |
JP-2 | 1.16±0.12b | 42.42±16.15a | 25.05±3.76a | 1 258.23±542.04a | 50.67±12.25a | |
JP-CK | 2.29±0.41a | 33.42±14.14a | 17.64±5.94a | 968.38±231.03a | 40.46±20.35a |
Table 3 Variations in growth parameters of Caragana korshinskii under distinct biocrust inoculation regimes
衰退程度 | 处理 | 衰退指数 | 分枝数/枝 | 新梢长度/cm | 地上生物量/g | 植被覆盖度/% |
---|---|---|---|---|---|---|
轻度衰退 | JP-1 | 1.63±0.46a | 37.42±11.85a | 22.68±3.38a | 1 910.45±761.07a | 41.21±12.26a |
JP-2 | 1.67±0.43a | 35.53±6.53a | 22.86±5.99a | 1 821.82±810.45a | 32.64±9.22a | |
JP-CK | 1.26±0.20a | 36.08±15.29a | 24.22±6.46a | 1 527.73±822.73a | 33.62±2.20a | |
中度衰退 | JP-1 | 1.46±0.12a | 35.47±12.46a | 22.28±5.94a | 1 542.14±461.00a | 46.01±6.18a |
JP-2 | 1.86±0.57a | 39.81±13.25a | 24.63±6.34a | 1 411.01±536.10a | 46.30±8.22a | |
JP-CK | 1.74±0.06a | 38.33±14.98a | 21.65±4.46a | 1 286.57±398.13a | 44.84±9.64a | |
重度衰退 | JP-1 | 1.61±0.44ab | 31.96±15.62a | 18.41±7.34a | 752.56±462.49a | 39.29±17.26a |
JP-2 | 1.16±0.12b | 42.42±16.15a | 25.05±3.76a | 1 258.23±542.04a | 50.67±12.25a | |
JP-CK | 2.29±0.41a | 33.42±14.14a | 17.64±5.94a | 968.38±231.03a | 40.46±20.35a |
1 | 程积民,万惠娥,杜锋.黄土高原半干旱区退化灌草植被的恢复与重建[J].林业科学,2001,37(4):50-57. |
2 | 郑士光,贾黎明,庞琪伟,等.平茬对柠条林地根系数量和分布的影响[J].北京林业大学学报,2010,32(3):64-69. |
3 | 郭忠升,邵明安.雨水资源、土壤水资源与土壤水分植被承载力[J].自然资源学报,2003,18(5):522-528. |
4 | 张文文,郭忠升,宁婷,等.黄土丘陵半干旱区柠条林密度对土壤水分和柠条生长的影响[J].生态学报,2015,35(3):725-732. |
5 | 潘剑,刘思远,王毅,等.西北退化防护林可持续利用模式研究[J].环境生态学,2024,6(3):128-132. |
6 | 郭忠升,邵明安.土壤水分植被承载力研究成果在实践中的应用[J].自然资源学报,2009,24(12):2187-2193. |
7 | 郭忠升,李耀林.植物生长与土壤水关系调控起始期[J].生态学报,2009,29(10):5721-5729. |
8 | 郭忠升.黄土丘陵半干旱区土壤水分植被承载力研究[D].陕西杨凌:西北农林科技大学,2004. |
9 | 郭忠升.半干旱区柠条林利用土壤水分深度和耗水量[J].水土保持通报,2009,29(5):69-72. |
10 | 王占军,蒋齐,潘占兵,等.宁夏干旱风沙区不同密度人工柠条林营建对土壤环境质量的影响[J].西北农业学报,2012,21(12):153-157. |
11 | Chen Z, Wang G, Pan Y,et al.Water use patterns differed notably with season and slope aspect for Caragana korshinskii on the Loess Plateau of China[J].Catena,2021,198:105028. |
12 | Du Y, Yang Y, Wu S,et al.Core microbes regulate plant-soil resilience by maintaining network resilience during long-term restoration of alpine grasslands[J].Nature Communications,2025,16(1):3116. |
13 | 贾希洋,周静静,宿婷婷,等.平茬密度对荒漠草原人工柠条林间生境的影响[J].生态学报,2020,40(12):4126-4136. |
14 | 彭小梅,车存伟,苏靖茸,等.干旱区人工林稳定性与适宜性的树轮学评价体系构建与应用[J].中国沙漠,2024,44(1):33-42. |
15 | 马郡粒,张铁钢,杨振奇,等.砒砂岩区不同柠条配置模式对坡面水蚀特征及能量的影响[J].科技通报,2023,39(10):12-17. |
16 | 张倩,包庆丰,孙志宏,等.基于多目标的生态脆弱区柠条平茬模式优化研究[J].干旱区资源与环境,2023,37(10):148-156. |
17 | Standish R J, Parkhurst T.Interventions for resilient nature‐based solutions:an ecological perspective[J].Journal of Ecology,2024,112(11):2502-2509. |
18 | Sun J, Wang Y, Lee T M,et al.Nature-based Solutions can help restore degraded grasslands and increase carbon sequestration in the Tibetan Plateau[J].Communications Earth & Environment,2024,5(1):154. |
19 | 曲冠博,贾黎明.结构调控对人工用材林生长及生理生态过程影响研究进展[J].世界林业研究,2023,36(4):28-34. |
20 | 刘海龙.采矿废弃地的生态恢复与可持续景观设计[J].生态学报,2004,24(2):323-329. |
21 | 庞学勇,向双,赵文强,等.西南亚高山次生灌丛促进建群树种更新恢复技术[J].应用与环境生物学报,2021,27(3):667-676. |
22 | Hua F, Bruijnzeel L A, Meli P,et al.The biodiversity and ecosystem service contributions and trade‐offs of forest restoration approaches[J].Science,2022,376(6595):839-844. |
23 | Song G, Hui R, Yang H,et al.Biocrusts mediate the plant community composition of dryland restoration ecosystems[J].Science of the Total Environment,2022,844:157135. |
24 | Dan C, Liu G, Zhang Q,et al.Predicting the coupling effects of grass and shrub with biological crust on splash and sheet erosion[J].Soil and Tillage Research,2024,244:106208. |
25 | Dou Y, Yang Y, An S.Above-ground biomass models of Caragana korshinskii and Sophora viciifolia in the Loess Plateau,China[J].Sustainability,2019,11(6):1674. |
26 | 吉增宝.用数码照片和Photoshop计算植被覆盖度的简易方法[J].水土保持应用技术,2015(5):10-11. |
27 | 王秋燕,陈鹏飞,李学东,等.森林健康评价方法综述[J].南京林业大学学报(自然科学版),2018,42(2):177-183. |
28 | Hophonk L, Forkop L.An optimization of model based on fuzzy Multiple-criteria Decision Analysis for plants environment fffects[J].Journal of Bioinformatics and Intelligent Control,2015,4(2):117-124. |
29 | 马占英.平茬对黄土高原人工柠条林土壤碳输入的影响[D].陕西杨凌:西北农林科技大学,2020. |
30 | 候腾思,沈艳,马红彬,等.柠条平茬对荒漠草原土壤水分特征及水量平衡的影响[J].草业学报,2024,33(8):15-24. |
31 | 郭月峰,姚云峰,祁伟,等.平茬措施对柠条锦鸡儿林更新复壮的影响研究[M].北京:科学出版社,2020. |
32 | 张志强,郭月峰,祁伟,等.不同平茬模式对柠条细根构型及土壤养分的影响[J].华中农业大学学报,2024,43(6):210-218. |
33 | 王丽莉.柠条平茬复壮更新技术研究[J].现代农业科技,2013(8):156-157. |
34 | 芦娟,柴春山,蔡国军,等.不同留茬高度处理对柠条更新能力的影响[J].防护林科技,2011,24(4):45-47. |
35 | 高玉寒.黄花甸子小流域不同平茬模式对柠条锦鸡儿更新复壮的影响研究[D].呼和浩特:内蒙古农业大学,2020. |
36 | 郭梦佳.毛乌素沙地灌木固沙林平茬复壮生态效应研究[D].陕西杨凌:西北农林科技大学,2021. |
37 | 王世裕,王世昌,卢爱英.晋西北地区柠条林更新复壮技术研究[J].现代农业科技,2011(1):223-224. |
38 | 黄海广,李雪华,刘思洋,等.平茬高度对人工固沙灌木柠条锦鸡儿群落的影响[J].防护林科技,2022(6):9-13. |
39 | Chen B, Liu K, Wang C,et al.Tree allometry responses to competition and complementarity in mixed-species plantations of Betula alnoides [J].Forest Ecosystems,2024,11:100207. |
40 | Huo X, Ren C, Wang D,et al.Microbial community assembly and its influencing factors of secondary forests in Qinling Mountains[J].Soil Biology and Biochemistry,2023,184:109075. |
41 | Bai Y, Zhou Y, Chen X,et al.Tree species composition alters the decomposition of mixed litter and the associated microbial community composition and function in subtropical plantations in China[J].Forest Ecology and Management,2023,529:120743. |
42 | 张小菊,每杭,沈艳.平茬方式对宁夏荒漠草原人工柠条林土壤物理性质及持水能力的影响[J].草原与草坪,2020,40(4):73-79. |
43 | 杨凤群,齐雁冰,常庆瑞,等.农牧交错带植被恢复对土壤物理性质的影响[J].水土保持通报,2014,34(2):57-62. |
44 | Rebola-Lichtenberg J, Streit J, Schall P,et al.From facilitation to competition:the effect of black locust (Robinia pseudoacacia L.) on the growth performance of four poplar-hybrids (Populus spp.) in mixed short rotation coppice[J].New Forests,2021,52:639-656. |
45 | 刘爽,姚佳妮,沈聪,等.荒漠植物柠条根际土壤nifH基因荧光定量及固氮菌多样性分析[J].生物技术通报,2022,38(12):252-262. |
46 | Del Río M, Pretzsch H, Ruiz‐Peinado R,et al.Emerging stability of forest productivity by mixing two species buffers temperature destabilizing effect[J].Journal of Applied Ecology,2022,59(11):2730-2741. |
47 | Han L, Liu L, Peng L,et al.Mixing of tree species with the same water use strategy might lead to deep soil water deficit[J].Forest Ecology and Management,2023,534:120876. |
48 | Gong C, Tan Q, Liu G,et al.Impacts of tree mixtures on understory plant diversity in China[J].Forest Ecology and Management,2021,498:119545. |
49 | 殷齐琪,毕银丽,马少鹏,等.矿区压实土壤接种AMF对柠条生长的影响模拟试验[J].煤炭学报,2020,45(9):3253-3261. |
50 | 刘燕萍,马驰,莫保儒,等.柠条人工林下草本植被特征与土壤特性相关性研究[J].草地学报,2020,28(2):468-473. |
51 | Dan C, Liu G, Zhang Q,et al.The coupling effects of grass and shrub with biological crust on the overland flow hydrodynamic characteristics[J].Catena,2024,245:108281. |
52 | 周静静,马红彬,周瑶,等.荒漠草原不同带间距人工柠条林平茬对林间生境的影响[J].草业学报,2017,26(5):40-50. |
53 | 宋乃平,杨新国,何秀珍,等.荒漠草原人工柠条林重建的土壤养分效应[J].水土保持通报,2012,32(4):21-26. |
54 | 许亚东,王涛,李慧,等.黄土丘陵区人工柠条林土壤酶活性与养分变化特征[J].草地学报,2018,26(2):363-370. |
55 | 张甜,贾荣亮,高艳红,等.沙坡头人工固沙植被演替过程中主要结皮生物生态位和种间关联变化特征[J].中国沙漠,2021,41(4):100-108. |
56 | Liu J, Zhou Z, Liu J,et al.Effects of root density on soil detachment capacity by overland flow during one growing season[J].Journal of Soils and Sediments,2022,22(5):1500-1510. |
57 | Zhao Y, Li Y, Wei Y,et al.Biocrusts affect preferential flow and water holding capacity by regulating soil properties in Ultisols from subtropical China[J].Catena,2024,240:108004. |
[1] | Yali Ma, Li Ma, Liping Yang, Siqing Wang, Changming Zhao, Ning Chen. Coexistence patterns of biocrusts and vascular plants in drylands from the perspective of ecohydrology [J]. Journal of Desert Research, 2025, 45(3): 121-130. |
[2] | Miaomiao Shi, Jianqiang Huo, Gaoling Han, Yicong Nan, Xiaojuan Zhu, Rui Hu, Xue Su. Characteristics of herbaceous community in revegetation Caraganakorshinskii shrublands in Yanchi, Ningxia, China [J]. Journal of Desert Research, 2025, 45(3): 337-345. |
[3] | Lei Huang, Ying Zhao, Jingliang Chen, Bo Wang. A review on ecohydrological mechanisms of sand-fixing shrubs survival in the Tengger Desert [J]. Journal of Desert Research, 2025, 45(3): 80-92. |
[4] | Jiayu Du, Xianfeng Liu, Gaopeng Sun, Shuangshuang Li. Spatiotemporal variation in vegetation optical depth and its influencing factors over the Loess Plateau during 2003-2018 [J]. Journal of Desert Research, 2024, 44(3): 222-230. |
[5] | Zhenzi He, Bingxin Xu, Wenjing Liu, Yigang Hu. Carbon exchange of desert soil crust in response to simulated warming and changes of precipitation [J]. Journal of Desert Research, 2024, 44(3): 269-278. |
[6] | Jiahui Wang, Wenjie Qu, Jianjun Qu, Xinguo Yang, Lei Wang, Yue Yang, Weichun Qin, Bo Zhang, Jinshuai Niu. The process and influencing factors of wind retransmission of Caragana korshinskii seeds in the southeast edge of Tengger Desert [J]. Journal of Desert Research, 2023, 43(5): 108-115. |
[7] | Jinfeng Wang, Xiaoling Liu, Qing Li, Rende Wang, Sheng Wang. Spatio-temporal differentiation and driving factors of windbreak and sand fixation services in wind erosion area of the northern Loess Plateau [J]. Journal of Desert Research, 2023, 43(4): 220-230. |
[8] | Yu Zhang, Qianqian Gou, Min Gao, Yan Zhang, Wentin Guo, Guohua Wang. The response mechanism of early seed regeneration process of Caragana korshinskii bushes with different plantation ages in sandy-hilly region of northwest Shanxi Province [J]. Journal of Desert Research, 2023, 43(2): 243-254. |
[9] | Yu Wang, Zhenting Liu, Guanglei Gao, fengmei Du, Ying Zhang, Guodong Ding, Yue Ren, Hongyu Cao. Effects of Bacillus subtilis on seed germination, seedling growth of Caragana korshinskii and Ammopiptanthus mongolicus under drought stress [J]. Journal of Desert Research, 2022, 42(5): 73-81. |
[10] | Yanmei Liu, Hangyu Yang, Fenglian Liu, Junjun Wang, Lihong Wang, Tingting Zhang. Effects of soil bacterial-feeding nematodes on soil enzyme activity under biocrusts in desert areas [J]. Journal of Desert Research, 2022, 42(2): 77-84. |
[11] | Hangyu Yang, Yanmei Liu, Guangyuan Luo, Fenglian Liu. Effects of bacterial-feeding nematodes on soil microbial biomass under biocrusts in desert areas [J]. Journal of Desert Research, 2021, 41(6): 120-125. |
[12] | Jin Fan, Shiyao Li, Hailong Yu, Juying Huang. Soil enzyme activity and carbon, nitrogen and phosphorus stoichiometric characteristics under different types of biocrusts and subsoil in Mu Us Sandland [J]. Journal of Desert Research, 2021, 41(4): 109-120. |
[13] | Ziting Wang, Lei Yang, Guang Li, Chunshan Chai, Yangdong Zhang, Donghao Liu. Distribution and diversity of herbage under Caragana korshinskii plantation at hillslope scale in the semi-arid loess hilly region [J]. Journal of Desert Research, 2021, 41(2): 120-128. |
[14] | Di Deng, Zebin Zhao, Yuan Ma. Modeling of species distribution with GIS in arid regions: take Caragana korshinskii for example [J]. Journal of Desert Research, 2020, 40(5): 74-80. |
[15] | Wang Ziting, Li Guang, Cai Guojun, Chai Chunshan, Zhang Yangdong, Qi Jianli. Response of household income to Grain-for-Green Project in hilly region of Loess Plateau: a case study of Longtan watershed [J]. Journal of Desert Research, 2020, 40(1): 223-232. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech