中国沙漠 ›› 2023, Vol. 43 ›› Issue (1): 58-65.DOI: 10.7522/j.issn.1000-694X.2022.00087
杨璐1(), 刘鑫1, 赵昌成1, 康巧珍1, 鲁吉珂1, 赵鹏善2()
收稿日期:
2022-03-24
修回日期:
2022-05-30
出版日期:
2023-01-20
发布日期:
2023-01-17
通讯作者:
赵鹏善
作者简介:
赵鹏善(E-mail: zhaopengshan@lzb.ac.cn)基金资助:
Lu Yang1(), Xin Liu1, Changcheng Zhao1, Qiaozhen Kang1, Jike Lu1, Pengshan Zhao2()
Received:
2022-03-24
Revised:
2022-05-30
Online:
2023-01-20
Published:
2023-01-17
Contact:
Pengshan Zhao
摘要:
苋科藜亚科植物沙蓬(Agriophyllum squarrosum)是一种未来作物。沙蓬种子俗称沙米,含有丰富的蛋白质、必需氨基酸、不饱和脂肪酸等营养物质。淀粉占沙米粒重的43.85%以上。沙米淀粉颗粒为球形,表面光滑,平均粒径约1 μm,晶体结构为A型。沙米原生淀粉糊化黏度和糊化焓较高,热稳定性较好。湿热和超声处理后的沙米淀粉颗粒变粗糙,仍能保持A型晶型,糊化温度变高,热焓值降低,慢消化淀粉及抗性淀粉含量增加。沙米淀粉的结构和理化特性、功能属性及改性后的变化特征是沙米在食品及其他行业中综合开发利用的理论依据。
中图分类号:
杨璐, 刘鑫, 赵昌成, 康巧珍, 鲁吉珂, 赵鹏善. 沙米淀粉的结构及理化特性研究进展[J]. 中国沙漠, 2023, 43(1): 58-65.
Lu Yang, Xin Liu, Changcheng Zhao, Qiaozhen Kang, Jike Lu, Pengshan Zhao. Progress on the structural and physicochemical properties of sand rice ( Agriophyllum squarrosum ) starch[J]. Journal of Desert Research, 2023, 43(1): 58-65.
淀粉样品 | R1047/1022 | 原生淀粉/湿热处理 | |
---|---|---|---|
X-射线模式 | 结晶度/% | ||
沙米淀粉[ | 0.6360±0.005 | A/A | 22.00~37.95/38.17±0.25 |
藜麦淀粉[ | 1.0100±0.01 | A/A | 21.50~43.00/32.31 |
玉米淀粉[ | 1.0063±0.05 | A/A+V | 25.26±0.00/28.3±0.01 |
小麦淀粉[ | 0.8551±0.02 | A/A | 26.47±0.35/22.16±0.10 |
马铃薯淀粉[ | 1.3700±0.01 | B/A+B | 26.86±0.17/12.99±0.72 |
表1 不同作物原生淀粉及改性淀粉的FT-IR、X射线和结晶度比较
Table 1 Summary of FT-IR, X-ray and relative crystallinity of the native and HMT-modified starches in different crops
淀粉样品 | R1047/1022 | 原生淀粉/湿热处理 | |
---|---|---|---|
X-射线模式 | 结晶度/% | ||
沙米淀粉[ | 0.6360±0.005 | A/A | 22.00~37.95/38.17±0.25 |
藜麦淀粉[ | 1.0100±0.01 | A/A | 21.50~43.00/32.31 |
玉米淀粉[ | 1.0063±0.05 | A/A+V | 25.26±0.00/28.3±0.01 |
小麦淀粉[ | 0.8551±0.02 | A/A | 26.47±0.35/22.16±0.10 |
马铃薯淀粉[ | 1.3700±0.01 | B/A+B | 26.86±0.17/12.99±0.72 |
淀粉样品 | 原生淀粉/湿热处理 | ||||
---|---|---|---|---|---|
峰值黏度/(mPa·s) | 最终黏度/(mPa·s) | 崩解值/(mPa·s) | 回生值/(mPa·s) | 糊化温度/℃ | |
沙米淀粉[ | 2 543±36/1 846±8 | 3 998±27/3 674±35 | 868±94/173±48 | 2 400±48/2 002±57 | 46.98±0.49/50.70±0.73 |
藜麦淀粉[ | 3 756±5/3 748±9 | 4 049±5/3 289±5 | 1 064±11/633±14 | 869±6/606±21 | 60.30±0.40/75.05±0.83 |
小麦淀粉[ | 2 484±25/643±10 | 3 062±91/850±2 | 408±11/61±7 | 986±77/268±1 | 88.43±0.53/92.45±0.64 |
马铃薯淀粉[ | 7 297±37/257±4 | 2 827±8/366±5 | 5 688±150/15±1 | 1 218±105/123±1 | 67.88±0.40/— |
大米[ | 3 380±14/ | 3 048±15/ | 1 626±9/ | 1 292±10/ | 79.90±0.30/ |
表2 不同作物原生淀粉及改性淀粉RVA特征值
Table 2 Pasting characteristics of the native and HMT-modified starches in different crops
淀粉样品 | 原生淀粉/湿热处理 | ||||
---|---|---|---|---|---|
峰值黏度/(mPa·s) | 最终黏度/(mPa·s) | 崩解值/(mPa·s) | 回生值/(mPa·s) | 糊化温度/℃ | |
沙米淀粉[ | 2 543±36/1 846±8 | 3 998±27/3 674±35 | 868±94/173±48 | 2 400±48/2 002±57 | 46.98±0.49/50.70±0.73 |
藜麦淀粉[ | 3 756±5/3 748±9 | 4 049±5/3 289±5 | 1 064±11/633±14 | 869±6/606±21 | 60.30±0.40/75.05±0.83 |
小麦淀粉[ | 2 484±25/643±10 | 3 062±91/850±2 | 408±11/61±7 | 986±77/268±1 | 88.43±0.53/92.45±0.64 |
马铃薯淀粉[ | 7 297±37/257±4 | 2 827±8/366±5 | 5 688±150/15±1 | 1 218±105/123±1 | 67.88±0.40/— |
大米[ | 3 380±14/ | 3 048±15/ | 1 626±9/ | 1 292±10/ | 79.90±0.30/ |
淀粉样品 | 起始温度T0/℃ | 峰值温度Tp/℃ | 终止温度Tc/℃ | 糊化范围温度(Tc-T0)/℃ | 热焓值ΔH/(J·g-1) |
---|---|---|---|---|---|
沙米淀粉[ | 69.77±0.04/72.78±0.04 | 74.16±0.19/78.20±0.17 | 92.25±0.42/92.03±0.32 | 22.48±0.38/19.25±0.28 | 24.37±0.79/21.08±0.26 |
藜麦淀粉[ | 52.65/54.70 | 58.57/60.75 | 70.57/66.12 | 17.92/14.62 | 2.51/1.43 |
玉米淀粉[ | 71.60±0.90/92.20±0.37 | 77.30±1.10/96.92±0.84 | 82.11±0.86/103.39±0.65 | 9.51±0.96/10.19±0.95 | 10.07±0.67/5.45±0.49 |
小麦淀粉[ | 57.69±0.19/60.54±0.11 | 61.88±0.10/80.62±0.06 | 67.47±0.53/105.23±0.05 | 9.78±0.72/44.69±0.06 | 28.26±0.15/4.66±0.28 |
马铃薯淀粉[ | 60.93±0.18/63.55±0.02 | 64.93±0.06/83.55±0.21 | 73.19±0.18/97.14±0.11 | 12.26±0.01/33.59±0.13 | 18.19±0.07/10.35±0.28 |
表3 不同作物原生淀粉及改性淀粉的DSC热力学特征参数
Table 3 DSC thermal dynamic parameters of the native and HMT-modified starches in different crops
淀粉样品 | 起始温度T0/℃ | 峰值温度Tp/℃ | 终止温度Tc/℃ | 糊化范围温度(Tc-T0)/℃ | 热焓值ΔH/(J·g-1) |
---|---|---|---|---|---|
沙米淀粉[ | 69.77±0.04/72.78±0.04 | 74.16±0.19/78.20±0.17 | 92.25±0.42/92.03±0.32 | 22.48±0.38/19.25±0.28 | 24.37±0.79/21.08±0.26 |
藜麦淀粉[ | 52.65/54.70 | 58.57/60.75 | 70.57/66.12 | 17.92/14.62 | 2.51/1.43 |
玉米淀粉[ | 71.60±0.90/92.20±0.37 | 77.30±1.10/96.92±0.84 | 82.11±0.86/103.39±0.65 | 9.51±0.96/10.19±0.95 | 10.07±0.67/5.45±0.49 |
小麦淀粉[ | 57.69±0.19/60.54±0.11 | 61.88±0.10/80.62±0.06 | 67.47±0.53/105.23±0.05 | 9.78±0.72/44.69±0.06 | 28.26±0.15/4.66±0.28 |
马铃薯淀粉[ | 60.93±0.18/63.55±0.02 | 64.93±0.06/83.55±0.21 | 73.19±0.18/97.14±0.11 | 12.26±0.01/33.59±0.13 | 18.19±0.07/10.35±0.28 |
淀粉样品 | 膨胀力/(g·g-1) | 溶解度/% | RDS/% | SDS/% | RS/% |
---|---|---|---|---|---|
沙米淀粉[ | 13.43±0.75/8.35±0.04 | 10.00±0.35/2.80±0.20 | 53.21/44.33±0.15 | 38.40/40.92±0.55 | 8.39/14.75±0.40 |
藜麦淀粉[ | 13.55±0.02/10.88±0.02 | 10.14±0.01/6.95±0.01 | 55.33±0.00/45.58±0.15 | 35.70±0.07/40.24±0.01 | 9.44±0.13/13.50±0.08 |
小麦淀粉[ | 11.15±0.03/8.30±0.05 | 14.19±0.04/19.79±0.05 | 60.57±0.10/33.83±0.14 | 22.25±0.02/45.61±0.04 | 17.18±0.11/20.56±0.12 |
马铃薯淀粉[ | 25.08±0.19/8.56±0.10 | 22.47±0.27/9.83±0.14 | 21.71±0.19/5.46±0.15 | 2.95±0.03/6.72±0.04 | 75.34±0.17/87.82±0.19 |
玉米淀粉[ | 10.29±0.14/ | 9.30±0.20/ | 47.80±0.65/ | 43.80±0.60/ | 8.40±0.55/ |
大米淀粉[ | 12.30±0.75/ | 6.77±0.18/ | 54.40±0.67/ | 39.50±0.87/ | 6.10±0.27/ |
表4 不同作物原生淀粉及改性淀粉的膨胀力、溶解度、快消化淀粉(RDS)、慢消化淀粉(SDS)、抗性淀粉(RS)含量
Table 4 Swelling power, solubility and digestion properties of the native and HMT-modified starches in different crops
淀粉样品 | 膨胀力/(g·g-1) | 溶解度/% | RDS/% | SDS/% | RS/% |
---|---|---|---|---|---|
沙米淀粉[ | 13.43±0.75/8.35±0.04 | 10.00±0.35/2.80±0.20 | 53.21/44.33±0.15 | 38.40/40.92±0.55 | 8.39/14.75±0.40 |
藜麦淀粉[ | 13.55±0.02/10.88±0.02 | 10.14±0.01/6.95±0.01 | 55.33±0.00/45.58±0.15 | 35.70±0.07/40.24±0.01 | 9.44±0.13/13.50±0.08 |
小麦淀粉[ | 11.15±0.03/8.30±0.05 | 14.19±0.04/19.79±0.05 | 60.57±0.10/33.83±0.14 | 22.25±0.02/45.61±0.04 | 17.18±0.11/20.56±0.12 |
马铃薯淀粉[ | 25.08±0.19/8.56±0.10 | 22.47±0.27/9.83±0.14 | 21.71±0.19/5.46±0.15 | 2.95±0.03/6.72±0.04 | 75.34±0.17/87.82±0.19 |
玉米淀粉[ | 10.29±0.14/ | 9.30±0.20/ | 47.80±0.65/ | 43.80±0.60/ | 8.40±0.55/ |
大米淀粉[ | 12.30±0.75/ | 6.77±0.18/ | 54.40±0.67/ | 39.50±0.87/ | 6.10±0.27/ |
1 | 彭菁.沙米蛋白和淀粉的理化性质研究及应用[D].南京:南京农业大学,2017. |
2 | 张继义,赵哈林,崔建垣,等. 科尔沁沙地流动沙丘沙米群落生物量特征及其防风固沙作用[J]. 水土保持学报, 2003(3):152-154. |
3 | Zhao P, Li X, Sun H,et al.Healthy values and de novo domestication of sand rice (Agriophyllum squarrosum),a comparative view against Chenopodium quinoa [J].Critical Reviews in Food Science and Nutrition,2021,49:1-22. |
4 | 张建农,赵继荣,李计红.沙米种子营养成分的测定与分析[J].草业科学,2006,23(2):77-79. |
5 | 王莉梅,刘睿杰,金青哲,等.多不饱和脂肪酸在癌症发生中的作用机制研究进展[J].中国油脂,2014,39(8):37-41. |
6 | 许才康,孙华,马红梅.食用油脂的组份及其产品的优化[J].浙江农业科学,2001(5):41-42. |
7 | Yin X, Yan X, Qian C,et al.Comparative transcriptome analysis to identify genes involved in terpenoid biosynthesis in Agriophyllum squarrosum,a folk medicinal herb native to Asian temperature deserts[J].Plant Biotechnology Report,2021,15(3):369-387. |
8 | Birasuren B, Kim N Y, Jeon H L,et al.Evaluation of the antioxidant capacity and phenolic content of Agriophyllum pungens seed extracts from Mongolia[J].Prevention Nutrition and Food Science,2013,18(3):188-195. |
9 | Bao S, Wu Y L, Wang X,et al. Agriophyllum oligosaccharides ameliorate hepatic injury in type 2 diabetic db/db mice targeting INS-R/IRS-2/PI3K/AKT/PPAR-gamma/Glut4 signal pathway[J].Journal of Ethnopharmacology,2020,257:112863-112873. |
10 | 王琦,王安,闫帅帅,等.沙蓬籽的酚类组成、抗氧化活性及其淀粉体外消化特性[J].陕西师范大学学报(自然科学版),2020,48(5):42-47. |
11 | Xu H Y, Zheng H C, Zhang H W,et al.Comparison of antioxidant constituents of Agriophyllum squarrosum seed with conventional crop seeds[J].Journal of Food Science,2018,83(7):1823-1831. |
12 | Kossmann J, Lloyd J.Understanding and influencing starch biochemistry[J].Critical Reviews in Biochemistry and Molecular Biology,2000,35(3):141-196. |
13 | 李俊蓉.高直链淀粉小麦突变体的筛选与淀粉特性的鉴定[D].郑州:河南农业大学,2021. |
14 | Han L H, Qiu S, Cao S P,et al.Molecular characteristics and physicochemical properties of very small granule starch isolated from Agriophyllum squarrosum seeds[J].Carbohydrate Polymers,2021,273:118583-118592. |
15 | Li G, Zhu F.Quinoa starch:structure,properties,and applications[J].Carbohydrate Polymers,2018,181:851-861. |
16 | Wu K, Dai S, Gan R,et al.Thermal and rheological properties of Mung Bean starch blends with potato,sweet potato,rice,and sorghum starches[J].Food and Bioprocess Technology,2016,9(8):1408-1421. |
17 | Ren Y, Guo K, Zhang B,et al.Comparison of physicochemical properties of very small granule starches from endosperms of dicotyledon plants[J].International Journal of Biological Macromolecules,2020,154:818-825. |
18 | 贺晓鹏,朱昌兰,刘玲珑,等.不同水稻品种支链淀粉结构的差异及其与淀粉理化特性的关系[J].作物学报,2010,36:276-284. |
19 | Bertoft E, Piyachomkwan K, Chatakanonda P,et al.Internal unit chain composition in amylopectins[J].Carbohydrate Polymers,2008,74(3):527-543. |
20 | Chung H J, Hoover R, Liu Q.The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch[J].International Journal of Biological Macromolecules,2009,44(2):203-210. |
21 | Kong X L, Bertoft E, Bao J S,et al.Molecular structure of amylopectin from amaranth starch and its effect on physicochemical properties[J].International Journal of Biological Macromolecules,2008,43(4):377-382. |
22 | Li G, Zhu F.Amylopectin molecular structure in relation to physicochemical properties of quinoa starch[J].Carbohydrate Polymers,2017,164:396-402. |
23 | Kaur H, Gill B S.Effect of high-intensity ultrasound treatment on nutritional,rheological and structural properties of starches obtained from different cereals[J].International Journal of Biological Macromolecules,2019,126:367-375. |
24 | Zhu F.Structures,physicochemical properties,and applications of amaranth starch[J].Critical Reviews in Food Science and Nutrition,2017,57(2):313-325. |
25 | Sevenou O, Hill S E, Farhat I A,et al.Organisation of the external region of the starch granule as determined by infrared spectroscopy[J].International Journal of Biological Macromolecules,2002,31:79-85. |
26 | Liu K, Zhang B, Chen L,et al.Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment[J].Food Chemistry,2019,271:102-108. |
27 | Han L H, Wei Q, Cao S P,et al.The assisting effects of ultrasound on the multiscale characteristics of heat-moisture treated starch from Agriophyllum squarrosum seeds[J].International Journal of Biological Macromolecules,2021,187:471-480. |
28 | Wu C S, Ji G Y, Gao F,et al.Effect of heat-moisture treatment on the structural and physicochemical characteristics of sand rice (Agriophyllum squarrosum) starch[J].Nutrition & Food Science,2021,9(12):6720-6727. |
29 | 陈若瑄.藜麦粉的理化特性及其挤压型面条的制备[D].无锡:江南大学,2019. |
30 | 时超.湿热处理协同疏水改性藜麦淀粉的制备及其在皮克林乳液中的应用[D].沈阳:沈阳师范大学,2019. |
31 | 扶雄,张明,朱思明,等.湿热处理对玉米淀粉理化性质及消化性的影响[J].华南理工大学学报(自然科学版),2015,43(2):27-32. |
32 | 宫冰.反复/连续湿热处理对不同晶型淀粉结构和理化性质的影响机制[D].陕西杨凌:西北农林科技大学,2018. |
33 | 张琨.小麦淀粉糊化特性的全基因组关联分析[D].郑州:河南农业大学,2019. |
34 | 袁晓丽.藜麦淀粉的提取及改性后理化性质的分析[D].天津:天津科技大学,2017. |
35 | Ahamed N T, Singhal R S, Kulkarni P R,et al.Physicochemical and functional properties of Chenopodium quinoa starch[J].Carbohydrate Polymers,31:99-103. |
36 | 张明.湿热协同微波处理对淀粉理化性质及消化性的影响[D].广州:华南理工大学,2014. |
37 | Englyst H N, Veenstra J, Hudson G J.Measurement of rapidly available glucose (RAG) in plant foods:a potential in vitro predictor of the glycaemic response[J].British Journal of Nutrition,1996,75(3):327-337. |
38 | Englyst H N, Kingman S M, Cummings J H.Classification and measurement of nutritionally important starch fractions[J].European Journal of Clinical Nutrition,1992,46():S33-50. |
39 | Bello-Perez L A, Flores-Silva P C, Agama-Acevedo E,et al.Starch digestibility:past,present,and future[J].Journal of the Science of Food and Agriculture,2020,100(14):5009-5016. |
40 | 袁添瑨.藜麦面条加工工艺研究[D].郑州:河南工业大学,2020. |
41 | 冯佰利.湿热处理改性苦荞淀粉的理化性质及体外消化率[D].陕西杨凌:西北农林科技大学,2021. |
42 | 谢莹.小麦多孔淀粉的制备、结构性质及应用研究[D].合肥:合肥工业大学,2019. |
43 | He H, Zheng B, Wang H W,et al.Insights into the multi-scale structure and in vitro digestibility changes of rice starch-oleic acid/linoleic acid complex induced by heat-moisture treatment[J].Food Research International,2020,137:109612. |
44 | Kim H Y, Lee J H, Kim J Y,et al.Characterization of nanoparticles prepared by acid hydrolysis of various starches[J].Starch-Starke,2012,64(5):367-373. |
45 | Liu H, Lv M, Peng Q,et al.Physicochemical and textural properties of tartary buckwheat starch after heat-moisture treatment at different moisture levels[J].Starch-Starke,2015,67(3/4):276-284. |
46 | Dong J, Huang L, Chen W,et al.Effect of heat-moisture treatments on digestibility and physicochemical property of whole Quinoa flour[J].Foods,2021,10(12):3042-3053. |
47 | Zavareze E D, Dias A R G.Impact of heat-moisture treatment and annealing in starches:a review[J].Carbohydrate Polymers,2011,83(2):317-328. |
48 | 张奎亮,代养勇,侯汉学,等.超声处理对马铃薯淀粉结构特性及理化性质的影响[J].食品科学,2018,139(5):128-134. |
49 | Ali N A, Dash K K, Routray W.Physicochemical characterization of modified lotus seed starch obtained through acid and heat moisture treatment[J].Food Chemistry,2020,319:126513-126523. |
50 | Jan K N, Panesar P S, Rana J C,et al.Structural,thermal and rheological properties of starches isolated from Indian quinoa varieties[J].International Journal of Biological Macromolecules,2017,102:315-322. |
51 | 唐玮泽.多次湿热处理对大米淀粉和米粉消化性的影响[D].长沙:中南林业科技大学,2021. |
52 | Sullivan A C, Pangloli P, Dia V P.Impact of ultrasonication on the physicochemical properties of sorghum kafirin and in vitro pepsin-pancreatin digestibility of sorghum gluten-like flour[J].Food Chemistry,2018,240:1121-1130. |
53 | 张志华.超声波处理对淀粉结构与性质的影响研究[D].天津:天津科技大学,2012. |
54 | Sun Q, Han Z, Wang L,et al.Physicochemical differences between sorghum starch and sorghum flour modified by heat-moisture treatment[J].Food Chemistry,2014,145:756-764. |
55 | Zhu F, Li H.Modification of quinoa flour functionality using ultrasound[J].Ultrason Sonochem,2019,52:305-310. |
56 | 梁云浩,王周利,蔡瑞,等.超声波处理对糙米淀粉结构与理化性质的影响[J].食品研究与开发,2021,42(19):36-43. |
[1] | 罗维成, 赵文智, 刘继亮, 杨竟艺, 白雪莲, 魏乐民, 冯怡琳. 祁连山自然保护区煤矿修复区地表节肢动物分布特征及其影响因素[J]. 中国沙漠, 2022, 42(6): 165-175. |
[2] | 李映坤, 李锦荣, 董雷, 罗祥英, 韩兆恩, 王茹. 乌兰布和沙漠周边典型植物群落防风阻沙效果[J]. 中国沙漠, 2022, 42(6): 65-73. |
[3] | 陈思淇, 张玉钧, 高云, 肖书文, 张娇娇. 基于AHP-PROMETHEE-GIS的半干旱地区生态旅游活动适宜性分析——以宁夏灵武市白芨滩沙漠公园为例[J]. 中国沙漠, 2022, 42(2): 121-133. |
[4] | 赵啸龙, 谢玉鸿, 马旭君, 王少昆. 科尔沁沙质草地不同恢复年限草本层群落结构及其与土壤理化性质的关系[J]. 中国沙漠, 2022, 42(2): 134-141. |
[5] | 郭新新, 岳平, 李香云, 乔静娟, 胡亚, 左小安. 降水量对荒漠草原骆驼蓬( Peganum harmala )地上生物量的影响[J]. 中国沙漠, 2022, 42(2): 164-172. |
[6] | 李小院, 张圣微, 王帅, 李瑞燊, 赵星宇, 刘敏敏. 放牧对退化草地近地面辐射的影响[J]. 中国沙漠, 2022, 42(1): 223-233. |
[7] | 苏培玺. 中国荒漠C4木本植物和土壤无机固碳研究回顾与展望[J]. 中国沙漠, 2022, 42(1): 23-33. |
[8] | 王亚妮, 胡宜刚, 王增如, 李昌盛. 开垦对阿拉尔绿洲盐渍化荒漠土壤微生物群落的影响[J]. 中国沙漠, 2021, 41(6): 126-137. |
[9] | 杨盼, 梁伟, 严建武, 李思雅, 兰志洋. 黄河流域多尺度水系统结构变化特征[J]. 中国沙漠, 2021, 41(6): 223-234. |
[10] | 冯永宏, 刘任涛, 刘纪贤, 蒋嘉瑜, 白燕娇, 郭志霞, 王文帆, 张安宁. 荒漠区油蒿(Artemisia ordosica)灌丛冠层中节肢动物群落结构特征[J]. 中国沙漠, 2021, 41(5): 94-102. |
[11] | 滕泽宇, 肖生春, 陈小红, 韩超. 阿拉善荒漠5种灌丛下土壤细菌特征[J]. 中国沙漠, 2021, 41(4): 34-44. |
[12] | 杨海峰, 李安玉, 王佳琪, 张国盛, 王树森, 张鑫. 沙柳(Salix psammophila)茎带化表型的鉴定与解剖结构[J]. 中国沙漠, 2021, 41(4): 45-50. |
[13] | 高永道, 乔荣荣, 季树新, 白雪莲, 王理想, 常学礼. 内蒙古河套灌区作物种植结构变化及其驱动因素[J]. 中国沙漠, 2021, 41(3): 110-117. |
[14] | 顿耀权, 屈建军, 康文岩, 王涛. 包兰铁路沙坡头段防护体系研究综述[J]. 中国沙漠, 2021, 41(3): 66-74. |
[15] | 李金霞, 朱亚男, 孙小妹, 韩国君, 陈年来. 氮磷添加对黑果枸杞(Lycium ruthenicum)营养器官非结构性碳水化合物特征的影响[J]. 中国沙漠, 2021, 41(2): 200-211. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn