[1] 赵舒曼,左洪超,卫翔谦.干旱区地膜覆盖农田下垫面对东亚气候效应的数值模拟[J].干旱区研究,2018,35(6):1363-1372. [2] Wilhite D A.Drought:A Global Assessment[M].London,UK:Routledge Publishers,2000:3-18. [3] Mittler R,Blumwald E.Genetic engineering for modern agriculture:challenges and perspectives[J].Annual Review of Plant Biology,2010,61:443-462. [4] Yoshida T,Mogami J,Yamaguchi-Shinozaki K.ABA-dependent and ABA-independent signaling in response to osmotic stress in plants[J].Current Opinion in Plant Biology,2014,21:133-139. [5] Pinheiro C,Chaves M.Photosynthesis and drought:can we make metabolic connections from available data?[J].Journal of Experimental Botany,2010,62(3):869-882. [6] Todaka D,Zhao Y,Yoshida T,et al.Temporal and spatial changes in gene expression,metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions[J].The Plant Journal,2017,90(1):61-78. [7] Liu F,Xing S,Ma H,et al.Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings[J].Applied Microbiology and Biotechnology,2013,97(20):9155-9164. [8] Cho S M,Kang B R,Kim Y C.Transcriptome analysis of induced systemic drought tolerance elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana[J].The Plant Pathology Journal,2013,29(2):209-220. [9] Timmusk S,Wagner E G H.The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression:a possible connection between biotic and abiotic stress responses[J].Molecular Plant Microbe Interactions,1999,12(11):951-959. [10] Danhorn T,Fuqua C.Biofilm formation by plant-associated bacteria[J].Annual Review of Microbiology,2007,61:401-422. [11] Branda S S,Vik S,Friedman L,et al.Biofilms:the matrix revisited[J].Trends in Microbiology,2005,13(1):20-26. [12] Bianciotto V,Andreotti S,Balestrini R,et al.Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots[J].Molecular Plant Microbe Interactions,2001,14(2):255-260. [13] Rodríguez-Navarro D N,Dardanelli M S,Ruíz-Saínz J E.Attachment of bacteria to the roots of higher plants[J].FEMS Microbiology Letters,2007,272(2):127-136. [14] Webb J S,Givskov M,Kjelleberg S.Bacterial biofilms:prokaryotic adventures in multicellularity[J].Current Opinion in Microbiology,2003,6(6):578-585. [15] Mielich-Süss B,Lopez D.Molecular mechanisms involved in Bacillus subtilis biofilm formation[J].Environmental Microbiology,2015,17(3):555-565. [16] Zhang N,Wang D,Liu Y,et al.Effects of different plant root exudates and their organic acid components on chemotaxis,biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains[J].Plant and Soil,2014,374(1/2):689-700. [17] Wang C J,Yang W,Wang C,et al.Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains[J]. PLoS One,2012,7(12):e52565. [18] Calvo-Polanco M,Sánchez-Romera B,Aroca R,et al.Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato[J].Environmental and Experimental Botany,2016,131:47-57. [19] Tiwari S,Prasad V,Chauhan P S,et al.Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice[J].Frontiers in Plant Science,2017,8:1510. [20] 刘少芳,王若愚.植物根际促生细菌提高植物耐盐性研究进展[J].中国沙漠,2019,39(2):1-12. [21] Xie S,Jiang H,Ding T,et al.Bacillus amyloliquefaciens FZB42 represses plant miR846 to induce systemic resistance via a jasmonic acid-dependent signalling pathway[J].Molecular Plant Pathology,2018,19(7):1612-1623. [22] Chen X H,Koumoutsi A,Scholz R,et al.Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42[J].Nature Biotechnology,2007,25(9):1007-1014. [23] Gao T,Greenwich J,Li Y,et al.The bacterial tyrosine kinase activator TkmA contributes to biofilm formation largely independent of the cognate kinase PtkA in Bacillus subtilis[J].Journal of Bacteriology,2015:438. [24] Sarkar S,Marcos M P.D-amino acids do not inhibit biofilm formation in Staphylococcus aureus[J].PLoS One,2015,10(2):e0117613. [25] Lu X,Liu S F,Yue L,et al.EpsC involved in the encoding of exopolysaccharides produced by Bacillus amyloliquefaciens FZB42 act to boost the drought tolerance of Arabidopsis thaliana[J].International Journal of Molecular Sciences,2018,19(12):3795. [26] 王文洁,唐炜,俞玲娜,等.蒽酮-硫酸法与苯酚-硫酸法测定凉粉草多糖的比较[J].食品科技,2017(9):274-279. [27] Idris E E,Iglesias D J,Talon M,et al.Tryptophan-dependent production of indole-3-Acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42[J].Molecular Plant Microbe Interactions,2007,20(6):619-626. [28] Silambarasan S,Logeswari P,Cornejo P,et al.Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions[J]. International Journal of Biological Macromolecules,2019,121:55-62. [29] John A L.Exopolysaccharides in plant-bacterial interactions[J].Annual Reviews in Microbiology,1992,46:307-346. [30] Sutherland I W.Bacterial surface polysaccharides:structure and function[J].International Review of Cytology,1988,113:187-231. [31] Rodriguez-Navarro D N,Dardanelli M S,Ruiz-Sainz J E.Attachment of bacteria to the roots of higher plants[J].FEMS Microbiology Letters,2007,272(2):127-136. [32] 刘洋,刘琳,邹媛媛,等.与植物联合的细菌生物膜及其形成机制的研究进展[J].自然科学进展,2009,19(9):896-905. [33] Rillig M C,Mummey D L.Mycorrhizas and soil structure[J].New Phytologist,2006,171(1):41-53. [34] 陈军,戴俊英.水分胁迫下玉米叶片光合作用、脂质过氧化及超微结构变化的关系[J].玉米科学,1994,2(4):36-40. [35] Bashan Y,Holguin G,De-Bashan L E.Azospirillum-plant relationships:physiological,molecular,agricultural,and environmental advances (1997-2003)[J].Canadian Journal of Microbiology,2004,50(8):521-577. |