Please wait a minute...
img

官方微信

高级检索
中国沙漠  2019, Vol. 39 Issue (3): 199-205    DOI: 10.7522/j.issn.1000-694X.2019.00019
    
干旱对解淀粉芽孢杆菌(Bacillus amyloliquefaciens)FZB42生物被膜的形成及根际定殖能力的影响
卢翔1,2, 王若愚1
1. 中国科学院西北生态环境资源研究院 皋兰生态与农业综合研究站/甘肃省寒区旱区逆境生理与生态重点实验室, 甘肃 兰州 730000;
2. 中国科学院大学, 北京 100049
Effects of Drought Stress on the Biofilm Formation and Root Colonization Ability of Bacillus amyloliquefaciens FZB42
Lu Xiang1,2, Wang Ruoyu1
1. Gaolan Station of Agricultural and Ecological Experiment/Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(4992 KB)  
摘要: 解淀粉芽孢杆菌(Bacillus amyloliquefaciens)FZB42是一种植物根际促生菌(PGPR),能够促进植物生长,提高植物抵抗病害,干旱和盐胁迫的能力。但关于干旱胁迫下解淀粉芽孢杆菌FZB42自身生物被膜形成能力及根际定殖能力的研究鲜见报道。利用PEG-6000模拟干旱胁迫,进行渗透势分别为-0.05、-0.50、-1.48、-2.95 MPa的干旱胁迫处理,测定分析此胁迫条件对解淀粉芽孢杆菌FZB42的生长、生物被膜的形成、根际定殖能力以及胞外多糖产量的影响,为进一步阐明解淀粉芽孢杆菌FZB42对提高植物的抗干旱能力提供理论依据。结果表明:(1)高浓度的PEG-6000能够显著抑制解淀粉芽孢杆菌FZB42的生长、生物被膜的形成及在拟南芥(Arabidopsis thaliana)根际的定殖能力。当添加15% PEG-6000时,生物被膜吸光度(OD600)和根际定殖数量达到最低值,分别为1.542和1 500 cfu·mm-1。(2)解淀粉芽孢杆菌FZB42的胞外多糖分泌量随PEG-6000浓度的增加而增加。不添加PEG-6000时,胞外多糖含量最低为150.2 mg·L-1。当添加15% PEG-6000时,胞外多糖的产量最高为568.8 mg·L-1
关键词: 干旱解淀粉芽孢杆菌(Bacillus amyloliquefaciens)FZB42生物被膜根际定殖胞外多糖    
Abstract: Bacillus amyloliqueliciens FZB42 is a plant growth-promoting rhizobacteria (PGPR) that promotes plant growth, improves disease resistance, drought and salt tolerance abilities. However, there are few reports on the growth, biofilm formation, root colonization ability and exoposaccharides production of B. amyloliquefaciens FZB42 under drought stress. In this study, PEG-6000 was used to simulate drought stress, and the osmotic potentials were -0.05, -0.50, -1.48 and -2.95 MPa, respectively. The growth, biofilm formation, rhizosphere colonization ability and extracellular polysaccharide yield of B. amyloliquefaciens FZB42 under different concentrations of PEG-6000 were determined. This paper provided a theoretical basis for improving the drought resistance of plants by B. amyloliquefaciens FZB42. The results showed that: (1) High concentration of PEG-6000 can significantly inhibit the growth, biofilm formation and colonization ability of B. amyloliquefaciens FZB42 in Arabidopsis rhizosphere. When 15% PEG-6000 was added, the OD600 and numbers in the rhizosphere reached the lowest values of 1.542 and 1 500 cfu·mm-1, respectively. (2) The production of exoposaccharides of B. amyloliquefaciens FZB42 increased significantly with the increasement of PEG-6000 concentration. When there was none PEG-6000, the extracellular polysaccharide content was the lowest at 150.2 mg·L-1. When 15% PEG-6000 was added, the yield of extracellular polysaccharide was the highest at 568.8 mg·L-1.
Key words: drought stress    Bacillus amyloliquefaciens FZB42    biofilm    root colonaization    exoposaccharides
收稿日期: 2018-12-25 出版日期: 2019-06-10
ZTFLH:  Q938.1  
基金资助: 甘肃大宗道地中药材绿色防控关键技术开发与应用项目(55Y855Z11);中国科学院前沿科学研究项目(QYZDJ-SSW_SMC011)
通讯作者: 王若愚(E-mail:wangruoyu@lzb.ac.cn)     E-mail: wangruoyu@lzb.ac.cn
作者简介: 卢翔(1990-),女,河南信阳人,博士研究生,主要从事芽孢杆菌诱导植物耐旱分子机理研究。E-mail:lux12@lzu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
卢翔
王若愚

引用本文:

卢翔, 王若愚. 干旱对解淀粉芽孢杆菌(Bacillus amyloliquefaciens)FZB42生物被膜的形成及根际定殖能力的影响[J]. 中国沙漠, 2019, 39(3): 199-205.

Lu Xiang, Wang Ruoyu. Effects of Drought Stress on the Biofilm Formation and Root Colonization Ability of Bacillus amyloliquefaciens FZB42. Journal of Desert Research, 2019, 39(3): 199-205.

链接本文:

http://www.desert.ac.cn/CN/10.7522/j.issn.1000-694X.2019.00019        http://www.desert.ac.cn/CN/Y2019/V39/I3/199

[1] 赵舒曼,左洪超,卫翔谦.干旱区地膜覆盖农田下垫面对东亚气候效应的数值模拟[J].干旱区研究,2018,35(6):1363-1372.
[2] Wilhite D A.Drought:A Global Assessment[M].London,UK:Routledge Publishers,2000:3-18.
[3] Mittler R,Blumwald E.Genetic engineering for modern agriculture:challenges and perspectives[J].Annual Review of Plant Biology,2010,61:443-462.
[4] Yoshida T,Mogami J,Yamaguchi-Shinozaki K.ABA-dependent and ABA-independent signaling in response to osmotic stress in plants[J].Current Opinion in Plant Biology,2014,21:133-139.
[5] Pinheiro C,Chaves M.Photosynthesis and drought:can we make metabolic connections from available data?[J].Journal of Experimental Botany,2010,62(3):869-882.
[6] Todaka D,Zhao Y,Yoshida T,et al.Temporal and spatial changes in gene expression,metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions[J].The Plant Journal,2017,90(1):61-78.
[7] Liu F,Xing S,Ma H,et al.Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings[J].Applied Microbiology and Biotechnology,2013,97(20):9155-9164.
[8] Cho S M,Kang B R,Kim Y C.Transcriptome analysis of induced systemic drought tolerance elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana[J].The Plant Pathology Journal,2013,29(2):209-220.
[9] Timmusk S,Wagner E G H.The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression:a possible connection between biotic and abiotic stress responses[J].Molecular Plant Microbe Interactions,1999,12(11):951-959.
[10] Danhorn T,Fuqua C.Biofilm formation by plant-associated bacteria[J].Annual Review of Microbiology,2007,61:401-422.
[11] Branda S S,Vik S,Friedman L,et al.Biofilms:the matrix revisited[J].Trends in Microbiology,2005,13(1):20-26.
[12] Bianciotto V,Andreotti S,Balestrini R,et al.Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation on mycorrhizal and nonmycorrhizal carrot roots[J].Molecular Plant Microbe Interactions,2001,14(2):255-260.
[13] Rodríguez-Navarro D N,Dardanelli M S,Ruíz-Saínz J E.Attachment of bacteria to the roots of higher plants[J].FEMS Microbiology Letters,2007,272(2):127-136.
[14] Webb J S,Givskov M,Kjelleberg S.Bacterial biofilms:prokaryotic adventures in multicellularity[J].Current Opinion in Microbiology,2003,6(6):578-585.
[15] Mielich-Süss B,Lopez D.Molecular mechanisms involved in Bacillus subtilis biofilm formation[J].Environmental Microbiology,2015,17(3):555-565.
[16] Zhang N,Wang D,Liu Y,et al.Effects of different plant root exudates and their organic acid components on chemotaxis,biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains[J].Plant and Soil,2014,374(1/2):689-700.
[17] Wang C J,Yang W,Wang C,et al.Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains[J]. PLoS One,2012,7(12):e52565.
[18] Calvo-Polanco M,Sánchez-Romera B,Aroca R,et al.Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato[J].Environmental and Experimental Botany,2016,131:47-57.
[19] Tiwari S,Prasad V,Chauhan P S,et al.Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice[J].Frontiers in Plant Science,2017,8:1510.
[20] 刘少芳,王若愚.植物根际促生细菌提高植物耐盐性研究进展[J].中国沙漠,2019,39(2):1-12.
[21] Xie S,Jiang H,Ding T,et al.Bacillus amyloliquefaciens FZB42 represses plant miR846 to induce systemic resistance via a jasmonic acid-dependent signalling pathway[J].Molecular Plant Pathology,2018,19(7):1612-1623.
[22] Chen X H,Koumoutsi A,Scholz R,et al.Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42[J].Nature Biotechnology,2007,25(9):1007-1014.
[23] Gao T,Greenwich J,Li Y,et al.The bacterial tyrosine kinase activator TkmA contributes to biofilm formation largely independent of the cognate kinase PtkA in Bacillus subtilis[J].Journal of Bacteriology,2015:438.
[24] Sarkar S,Marcos M P.D-amino acids do not inhibit biofilm formation in Staphylococcus aureus[J].PLoS One,2015,10(2):e0117613.
[25] Lu X,Liu S F,Yue L,et al.EpsC involved in the encoding of exopolysaccharides produced by Bacillus amyloliquefaciens FZB42 act to boost the drought tolerance of Arabidopsis thaliana[J].International Journal of Molecular Sciences,2018,19(12):3795.
[26] 王文洁,唐炜,俞玲娜,等.蒽酮-硫酸法与苯酚-硫酸法测定凉粉草多糖的比较[J].食品科技,2017(9):274-279.
[27] Idris E E,Iglesias D J,Talon M,et al.Tryptophan-dependent production of indole-3-Acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42[J].Molecular Plant Microbe Interactions,2007,20(6):619-626.
[28] Silambarasan S,Logeswari P,Cornejo P,et al.Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions[J]. International Journal of Biological Macromolecules,2019,121:55-62.
[29] John A L.Exopolysaccharides in plant-bacterial interactions[J].Annual Reviews in Microbiology,1992,46:307-346.
[30] Sutherland I W.Bacterial surface polysaccharides:structure and function[J].International Review of Cytology,1988,113:187-231.
[31] Rodriguez-Navarro D N,Dardanelli M S,Ruiz-Sainz J E.Attachment of bacteria to the roots of higher plants[J].FEMS Microbiology Letters,2007,272(2):127-136.
[32] 刘洋,刘琳,邹媛媛,等.与植物联合的细菌生物膜及其形成机制的研究进展[J].自然科学进展,2009,19(9):896-905.
[33] Rillig M C,Mummey D L.Mycorrhizas and soil structure[J].New Phytologist,2006,171(1):41-53.
[34] 陈军,戴俊英.水分胁迫下玉米叶片光合作用、脂质过氧化及超微结构变化的关系[J].玉米科学,1994,2(4):36-40.
[35] Bashan Y,Holguin G,De-Bashan L E.Azospirillum-plant relationships:physiological,molecular,agricultural,and environmental advances (1997-2003)[J].Canadian Journal of Microbiology,2004,50(8):521-577.
[1] 韩兰英, 张强, 贾建英, 王有恒, 黄涛. 气候变暖背景下中国干旱强度、频次和持续时间及其南北差异性[J]. 中国沙漠, 2019, 39(5): 1-10.
[2] 李小妹, 严平. 干旱区沙漠与河流复合地貌过程研究进展[J]. 中国沙漠, 2019, 39(5): 97-104.
[3] 黑维高, 詹瑾, 韩丹, 杨红玲, 李玉霖. 科尔沁沙地2种优势固沙灌木的相容性生物量模型[J]. 中国沙漠, 2019, 39(5): 193-199.
[4] 骆丹丹, 白小明, 孙艳敏, 金艳丽, 陈辉, 袁娅娟, 李玉杰. 甘肃野生马蔺(Iris lacteal var. chinensis)对干旱胁迫的生理响应及抗旱性[J]. 中国沙漠, 2019, 39(5): 210-221.
[5] 王晓, 夏江宝, 周东兴, 赵自国, 董林水. 黄河三角洲贝壳砂干旱生境杠柳(Periploca sepium)叶片的光合作用特征[J]. 中国沙漠, 2019, 39(4): 139-148.
[6] 王莺, 赵文, 张强. 中国北方地区农业干旱脆弱性评价[J]. 中国沙漠, 2019, 39(4): 149-158.
[7] 包永志, 段利民, 刘廷玺, 王冠丽, 童新. 小叶锦鸡儿(Caragana microphylla)群落蒸散发模拟[J]. 中国沙漠, 2019, 39(4): 177-186.
[8] 梁海荣, 李佳陶, 李艳丽, 赵英铭, 冯伟, 程一本, 于思佳, 杨文斌. 乌兰布和沙漠灌溉农田深层渗漏特征与水量平衡[J]. 中国沙漠, 2019, 39(4): 187-194.
[9] 王姝, 李金建, 秦宁生. 基于历史帕默尔干旱指数(PDSI)数据集重建的长江源区过去706 a径流量[J]. 中国沙漠, 2019, 39(3): 126-135.
[10] 李成道, 李向义, Henry J Sun, 李磊, 林丽莎. 极端干旱区花花柴(Karelinia caspia)、骆驼刺(Alhagi sparsifolia)和胡杨(Populus euphratica)叶片凋落物分解特征[J]. 中国沙漠, 2019, 39(2): 193-201.
[11] 姚广前, 魏阳, 毕敏慧, 聂争飞, 方向文. 干旱胁迫下4种锦鸡儿属植物叶脉密度与最低水势关系[J]. 中国沙漠, 2018, 38(6): 1252-1258.
[12] 毕敏慧, 龚磊, 蒋超, 姚广前, 杨钰婕, 方向文. 乔木和灌木枝水分传导脆弱性沿降水量递增的分化[J]. 中国沙漠, 2018, 38(6): 1243-1251.
[13] 岳喜元, 左小安, 庾强, 徐翀, 吕朋, 张晶. 降水量和短期极端干旱对典型草原植物群落及优势种羊草(Leymus chinensis)叶性状的影响[J]. 中国沙漠, 2018, 38(5): 1009-1016.
[14] 杨轲, 孟亚雄, 马小乐, 李葆春, 司二静, 汪军成, 任盼荣, 王化俊. 干旱区啤酒花农艺性状与品质的关系[J]. 中国沙漠, 2018, 38(4): 772-779.
[15] 马俊梅, 满多清, 李得禄, 刘有军, 郭春秀. 干旱荒漠区退耕地植被演替及土壤水分变化[J]. 中国沙漠, 2018, 38(4): 800-807.