Journal of Desert Research ›› 2023, Vol. 43 ›› Issue (3): 305-317.DOI: 10.7522/j.issn.1000-694X.2023.00062
Wenfeng Chi1(), Yuetian Wang1, Xiaohong Dang2, Xiaoguang Wu3,4, Qiancheng Luo1(
)
Received:
2023-03-12
Revised:
2023-05-11
Online:
2023-05-20
Published:
2023-05-31
Contact:
Qiancheng Luo
CLC Number:
Wenfeng Chi, Yuetian Wang, Xiaohong Dang, Xiaoguang Wu, Qiancheng Luo. Temporal variation and spatial pattern of soil erosion in the Yellow River Basin[J]. Journal of Desert Research, 2023, 43(3): 305-317.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.desert.ac.cn/EN/10.7522/j.issn.1000-694X.2023.00062
数据类型 | 空间分辨率/比例尺 | 时间分辨率 | 格式 |
---|---|---|---|
遥感影像 | 2~15 m | 年 | Raster |
土地利用/覆盖数据 | 1∶10万 | 年 | shpfile |
气象数据 | 监测站点(311个) | 日 | Txt |
植被覆盖度(NDVI)数据 | 250 m | 8 d | Raster |
土壤类型(含养分)数据 | 1∶100万 | N/A | shpfile |
雪覆盖数据 | 1 km | 16 d | Raster |
植被覆盖度样方数据 | 样点 | 2010、2015、2020年 | shpfile |
土壤表层/剖面样点数据 | 样点 | 2010、2015、2020年 | shpfile |
数字高程(DEM)数据 | 30 m | N/A | Raster |
基础地理数据 | 1∶25万 | N/A | shpfile |
地貌类型数据 | 1∶25万 | N/A | shpfile |
Table 1 Data sources and paranmeters
数据类型 | 空间分辨率/比例尺 | 时间分辨率 | 格式 |
---|---|---|---|
遥感影像 | 2~15 m | 年 | Raster |
土地利用/覆盖数据 | 1∶10万 | 年 | shpfile |
气象数据 | 监测站点(311个) | 日 | Txt |
植被覆盖度(NDVI)数据 | 250 m | 8 d | Raster |
土壤类型(含养分)数据 | 1∶100万 | N/A | shpfile |
雪覆盖数据 | 1 km | 16 d | Raster |
植被覆盖度样方数据 | 样点 | 2010、2015、2020年 | shpfile |
土壤表层/剖面样点数据 | 样点 | 2010、2015、2020年 | shpfile |
数字高程(DEM)数据 | 30 m | N/A | Raster |
基础地理数据 | 1∶25万 | N/A | shpfile |
地貌类型数据 | 1∶25万 | N/A | shpfile |
分级 | 平均侵蚀模数/(t·km-2·a-1) | 土壤风蚀与水蚀主导区判断规则 |
---|---|---|
1 微度侵蚀 | <200 | 土壤风蚀和水蚀模数< 200 t·km-2·a-1 叠加,风、水蚀均可 |
2轻度侵蚀 | 200~2 500 | 土壤风蚀和水蚀模数200~2 500 t·km-2·a-1 叠加,大者赋主导类型(例如;风蚀模 数≥水蚀模数,赋值为风蚀轻度侵蚀区;否则反之,以下分级分类标准一致) |
3 中度侵蚀 | 2 500~5 000 | 土壤风蚀和水蚀模数2 500~5 000 t·km-2·a-1 叠加,值大者赋主导类型 |
4 强烈侵蚀 | 5 000~8 000 | 土壤风蚀和水蚀模数5 000~8 000 t·km-2·a-1 叠加,值大者赋主导类型 |
5 极强烈侵蚀 | 8 000~15 000 | 土壤风蚀和水蚀模数8 000~15 000 t·km-2·a-1 叠加,值大者赋主导类型 |
6 剧烈侵蚀 | ≥15 000 | 土壤风蚀和水蚀模数≥15 000 t·km-2·a-1 叠加,值大者赋主导类型 |
Table 2 Classification criterion of soil erosion[39]
分级 | 平均侵蚀模数/(t·km-2·a-1) | 土壤风蚀与水蚀主导区判断规则 |
---|---|---|
1 微度侵蚀 | <200 | 土壤风蚀和水蚀模数< 200 t·km-2·a-1 叠加,风、水蚀均可 |
2轻度侵蚀 | 200~2 500 | 土壤风蚀和水蚀模数200~2 500 t·km-2·a-1 叠加,大者赋主导类型(例如;风蚀模 数≥水蚀模数,赋值为风蚀轻度侵蚀区;否则反之,以下分级分类标准一致) |
3 中度侵蚀 | 2 500~5 000 | 土壤风蚀和水蚀模数2 500~5 000 t·km-2·a-1 叠加,值大者赋主导类型 |
4 强烈侵蚀 | 5 000~8 000 | 土壤风蚀和水蚀模数5 000~8 000 t·km-2·a-1 叠加,值大者赋主导类型 |
5 极强烈侵蚀 | 8 000~15 000 | 土壤风蚀和水蚀模数8 000~15 000 t·km-2·a-1 叠加,值大者赋主导类型 |
6 剧烈侵蚀 | ≥15 000 | 土壤风蚀和水蚀模数≥15 000 t·km-2·a-1 叠加,值大者赋主导类型 |
侵蚀类型 分区 | 侵蚀 强度 | 鄂尔多斯 内流区 | 黄河干流 上游水系 | 黄河源头 水系 | 湟水-洮河 水系 | 黄河下游 水系 | 黄河中游 水系 | 渭河-伊洛河水系 |
---|---|---|---|---|---|---|---|---|
土壤风蚀 | 微度 | 8 887.45 | 7 886.54 | 5 936.91 | 0.20 | 80.33 | 2 681.95 | 0.00 |
轻度 | 7 914.29 | 13 674.17 | 731.95 | 0.00 | 0.00 | 3 696.64 | 5.67 | |
中度 | 7 774.61 | 16 142.45 | 4 049.34 | 0.00 | 0.00 | 4 935.66 | 0.15 | |
强烈 | 4 467.64 | 7 006.11 | 114.08 | 4.08 | 0.00 | 6 620.02 | 0.00 | |
极强烈 | 3 916.47 | 3 910.87 | 3 215.53 | 42.54 | 0.00 | 3 060.93 | 0.00 | |
剧烈 | 5 064.67 | 6 654.55 | 40.82 | 0.00 | 0.00 | 45 94.53 | 0.00 | |
土壤水蚀 | 微度 | 3 273.58 | 43 589.34 | 90 601.16 | 50 252.26 | 22 497.93 | 67 883.22 | 57 601.50 |
轻度 | 1 172.81 | 24 995.75 | 25 000.09 | 17 936.13 | 715.75 | 20 749.71 | 27 131.17 | |
中度 | 1 777.32 | 20 317.38 | 10 531.54 | 12 591.47 | 2 532.20 | 25 982.12 | 28 285.32 | |
强烈 | 394.92 | 14 102.67 | 310.35 | 7 420.71 | 779.23 | 24 913.39 | 33 480.99 | |
极强烈 | 56.37 | 2 423.80 | 67.01 | 2 451.98 | 81.65 | 13 704.85 | 4 807.01 | |
剧烈 | 191.81 | 81.83 | 138.38 | 271.73 | 12.72 | 17 263.30 | 2 576.10 |
Table 3 Areas of wind-dominated and water-dominated erosion region classified into different erosion intensity in the secondary basins of the Yellow River Basin(km2)
侵蚀类型 分区 | 侵蚀 强度 | 鄂尔多斯 内流区 | 黄河干流 上游水系 | 黄河源头 水系 | 湟水-洮河 水系 | 黄河下游 水系 | 黄河中游 水系 | 渭河-伊洛河水系 |
---|---|---|---|---|---|---|---|---|
土壤风蚀 | 微度 | 8 887.45 | 7 886.54 | 5 936.91 | 0.20 | 80.33 | 2 681.95 | 0.00 |
轻度 | 7 914.29 | 13 674.17 | 731.95 | 0.00 | 0.00 | 3 696.64 | 5.67 | |
中度 | 7 774.61 | 16 142.45 | 4 049.34 | 0.00 | 0.00 | 4 935.66 | 0.15 | |
强烈 | 4 467.64 | 7 006.11 | 114.08 | 4.08 | 0.00 | 6 620.02 | 0.00 | |
极强烈 | 3 916.47 | 3 910.87 | 3 215.53 | 42.54 | 0.00 | 3 060.93 | 0.00 | |
剧烈 | 5 064.67 | 6 654.55 | 40.82 | 0.00 | 0.00 | 45 94.53 | 0.00 | |
土壤水蚀 | 微度 | 3 273.58 | 43 589.34 | 90 601.16 | 50 252.26 | 22 497.93 | 67 883.22 | 57 601.50 |
轻度 | 1 172.81 | 24 995.75 | 25 000.09 | 17 936.13 | 715.75 | 20 749.71 | 27 131.17 | |
中度 | 1 777.32 | 20 317.38 | 10 531.54 | 12 591.47 | 2 532.20 | 25 982.12 | 28 285.32 | |
强烈 | 394.92 | 14 102.67 | 310.35 | 7 420.71 | 779.23 | 24 913.39 | 33 480.99 | |
极强烈 | 56.37 | 2 423.80 | 67.01 | 2 451.98 | 81.65 | 13 704.85 | 4 807.01 | |
剧烈 | 191.81 | 81.83 | 138.38 | 271.73 | 12.72 | 17 263.30 | 2 576.10 |
1 | Borrelli P, Robinson D A, Fleischer L R,et al.An assessment of the global impact of 21st century land use change on soil erosion[J].Nature Communications,2017,8(1):2013. |
2 | Chi W F, Zhao Y Y, Kuang W H,et al.Impact of cropland evolution on soil wind erosion in Inner Mongolia of China[J].Land,2021,10(6):583. |
3 | Li C J, Fu B J, Wang S,et al.Drivers and impacts of changes in China's drylands[J].Nature Reviews Earth and Environment,2021,2(12):858-873. |
4 | Rolf N, Benbi D, Reichl F X,et al.Soil-borne gases and their influence on environment and human health[M]//Soil Components and Human Health.Berlin,Germany:Springer,2018:179-221. |
5 | Lal R.Accelerated soil erosion as a source of atmospheric CO2 [J].Soil & Tillage Research,2019,188:35-40. |
6 | 杨会民,王静爱,邹学勇,等.风水复合侵蚀研究进展与展望[J].中国沙漠,2016,36(4):962-971. |
7 | Remus Pravalie.Drylands extent and environmental issues:a global approach[J].Earth Science Reviews,2016,161:259-278. |
8 | Gao L, Bryan B A.Finding pathways to national-scale land-sector sustainability[J]. Nature,2017,544(7649):217-222. |
9 | Jules P, Benton T G, Pervez B Z,et al.Global assessment of agricultural system redesign for sustainable intensification[J].Nature Sustainability,2018,1(8):441-446. |
10 | Nagendra H, Bai X, Brondizio E S,et al.The urban south and the predicament of global sustainability[J].Nature Sustainability,2018,1(7):341-349. |
11 | 程清平,钟方雷,左小安,等.美丽中国与联合国可持续发展目标(SDGs)结合的黑河流域水资源承载力评价[J].中国沙漠,2020,40(1):204-214. |
12 | 高卿,骆华松,王振波,等.美丽中国的研究进展及展望[J].地理科学进展,2019,38(7):1021-1033. |
13 | 刘珺,郭中领,常春平,等.基于RWEQ和WEPS模型的中国北方农牧交错带潜在风蚀模拟[J].中国沙漠,2021,41(2):27-37. |
14 | Chi W F, Zhao Y Y, Kuang W H,et al.Impacts of anthropogenic land use/cover changes on soil wind erosion in China[J].Science of the Total Environment,2019,668:204-215. |
15 | Skidmore E L, Tatarko J.Stochastic wind simulation for erosion modeling[J].Transactions of the ASABE,1990,33(6):1893-1899. |
16 | Bilbro J D, Fryrear D W.Wind erosion losses as related to plant silhouette and soil cover[J].Agronomy Journal,1994,86(3):550-553. |
17 | 李宏薇,许尔琪,张红旗.伊犁河谷土壤侵蚀综合分区[J].中国农业资源与区划,2018,39(4):116-124. |
18 | Clinton N, Yu L, Gong P.Geographic stacking:Decision fusion to increase global land cover map accuracy[J].ISPRS Journal of Photogrammetry & Remote Sensing,2015,103(5):57-65. |
19 | Liu W C, Liu J, Kuang W H.Spatiotemporal patterns of soil protection effect of the Grain for Green Project in northern Shaanxi[J].Acta Geographica Sinica,2019,74(9):1835-1852. |
20 | 安志山,李栋梁,王涛,等.气候变化对风水蚀复合区的影响[J].中国沙漠,2012,32(3):610-617. |
21 | 傅伯杰.生态系统服务与生态安全[M].北京:高等教育出版社,2013. |
22 | Liu Y H, Yang Z L, Lin P,et al.Comparison and evaluation of multiple land surface products for the water budget in the Yellow River Basin[J].Journal of Hydrology,2019,584:124534. |
23 | 郑景云,文彦君,方修琦.过去2000年黄河中下游气候与土地覆被变化的若干特征[J].资源科学,2020,42(1):3-19. |
24 | 高海东,李占斌,李鹏,等.基于土壤侵蚀控制度的黄土高原水土流失治理潜力研究[J].地理学报,2015,70(9):1503-1515. |
25 | 王坤平,黄建胜,赵院.黄河流域生态工程重点小流域治理经验与做法[J].中国水土保持,2002(10):16-17. |
26 | 傅伯杰,赵文武,陈利顶,等.多尺度土壤侵蚀评价指数[J].科学通报,2006,51(16):1936-1943. |
27 | 刘纪远,匡文慧,张增祥,等.20世纪80年代末以来中国土地利用变化的基本特征与空间格局[J].地理学报,2014,69(1):3-14. |
28 | Feng X M, Fu B J, Piao S L,et al.Revegetation in China's Loess Plateau is approaching sustainable water resource limits[J].Nature Climate Change,2016,6:1019-1022. |
29 | 孙会慧,石培基,颜丙金,等.黄河上游生态脆弱区土地利用规模和结构调整的环境影响评价研究:以兰州市为例[J].水土保持通报,2013,33(5):245-249. |
30 | Fu B J, Wang S, Liu Y,et al.Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China[J].Annual Review of Earth and Planetary Sciences,2017,45(1):223-243. |
31 | 邓鑫欣,张加琼,杨明义,等.黄土高原水蚀风蚀交错带坡耕地土壤风蚀特征[J].水土保持研究,2019,26(3):1-6. |
32 | 邓鑫欣,张加琼,杨明义,等.黄土高原水蚀风蚀交错带坡耕地土壤风蚀速率空间分布[J].科学通报,2016,61():511-517. |
33 | 李永平,杨改河,冯永忠,等.黄土高原土壤风蚀区玉米起垄覆盖集水效应[J].农业工程学报,2009,25(4):59-65. |
34 | Zhang S T, Jia Y G, Fang L,et al.Effects of upward seepage on the resuspension of consolidated silty sediments in the Yellow River Delta[J].Journal of Coastal Research,2020,36(2):643-670. |
35 | Bryan B A, Gao L, Ye Y,et al.China's response to a national land-system sustainability emergency[J].Nature,2018,559(7713):193-204. |
36 | 周丹,张勃,安美玲,等.黄河流域不同时间尺度干旱对ENSO事件的响应[J].中国沙漠,2015,35(3):753-762. |
37 | 王俊杰,拾兵,柏涛,等.黄河流域降水格局及影响因素[J].中国沙漠,2022,42(6):94-102. |
38 | Huang S Z, Huang Q, Chang J X,et al.Drought structure based on a nonparametric multivariate standardized drought index across the Yellow River basin,China[J].Journal of Hydrology,2015,530:127-136. |
39 | 中华人民共和国水利部.土壤侵蚀分类分级标准:SL190-2007[M].北京:中国水利水电出版社,2008. |
40 | 迟文峰,白文科,刘正佳,等.基于RWEQ模型的内蒙古高原土壤风蚀研究[J].生态环境学报,2018,27(6):1024-1033. |
41 | Zhao Y Y, Chi W F, Kuang W H,et al.Ecological and environmental consequences of ecological projects in the Beijing-Tianjin sand source region[J].Ecological Indicators,2020,112(5):106111. |
42 | Fryrear D W, Krammes C A, Williamson D L,et al.Computing the wind erodible fraction of soils[J].Journal of Soil and Water Conservation,1994,49:183-188. |
43 | 刘广峰,吴波,范文义,等.基于像元二分模型的沙漠化地区植被覆盖度提取:以毛乌素沙地为例[J].水土保持研究,2007,14(2):268-271. |
44 | Oro L A D, Colazo J C, Buschiazzo D E.RWEQ-wind erosion predictions for variable soil roughness conditions[J].Aeolian Research,2016,20:139-146. |
45 | 王仁德,安晨宇,苑依笑,等.不同时间尺度下农田土壤风蚀可蚀性的变化[J].中国沙漠,2021,41(5):202-209. |
46 | 章文波,谢云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究[J].地理科学,2002(6):705-711. |
47 | Renard K G, Foster G R, Weesises G A,et al.Predicting soil erosion by water:a guide to conservation planning with the Revised Universal Soil Loss equation (RUSLE) [R]//USDA Agriculture Handbook No.703.Washington DC,USA:US Department of Agriculture,1997:1-367. |
48 | McCool D K, Foster G R, Mutchler C K.et al.Revised slope length factor for the universal soil loss equation[J].Transactions of the ASAE,1989,32(5):1571-1576. |
49 | 刘宝元,张科利.土壤可蚀性及其在侵蚀预报中的应用[J].自然资源学报,1999,14(4):345-350. |
50 | 蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-24. |
51 | Wang F, Pan X B, Gerlein-Safdi C,et al.Vegetation restoration in Northern China:a contrasted picture[J].Land Degradation & Development,2020,31(6):669-676. |
52 | 雷燕慧,丁国栋,李梓萌,等.京津风沙源治理工程区土地利用/覆盖变化及生态系统服务价值响应[J].中国沙漠,2021,41(6):29-40. |
53 | Lv Y H, Fu B J, Feng X M,et al.A policy-driven large scale ecological restoration:quantifying ecosystem services changes in the Loess Plateau of China[J].PLoS One,2012,7(2):e31782. |
54 | Chen C, Park T, Wang X H,et al.China and India lead in greening of the world through land-use management[J].Nature Sustainability,2019,2:122-129. |
55 | 傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响:以延安市羊圈沟流域为例[J].地理学报,1999,54(3):241-246. |
56 | Chi W F, Wang Y T, Lou Y X,et al.Effect of land use/cover change on soil wind erosion in the Yellow River Basin since the 1990s[J].Sustainability,2022,14(19):12930. |
57 | Wu Z T, Wu J J, Liu J H,et al.Increasing terrestrial vegetation activity of ecological restoration program in the Beijing-Tianjin Sand Source Region of China[J].Ecological Engineering,2013,52:37-50. |
58 | Zhao Y Y, Wu J G, He C Y,et al.Linking wind erosion to ecosystem services in drylands:a landscape ecological approach[J].Landscape Ecology,2017,32(12):2399-2417. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
©2018Journal of Desert Research
Tel:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn
Support:Magtech